Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
相手に伝えやすくなるデータの可視化
Search
Takato Shiroto
September 19, 2019
Technology
3
350
相手に伝えやすくなるデータの可視化
概要
1. 探索的データ分析と説明的データ分析
2. 可視化の文法
3.探索的データ分析のためのデータの可視化
4.ストーリテリング×データの可視化
5.まとめ
Takato Shiroto
September 19, 2019
Tweet
Share
More Decks by Takato Shiroto
See All by Takato Shiroto
Exploratory v6.7の紹介
takatoshiroto
0
900
Exploratory v6.6の紹介
takatoshiroto
0
1.6k
Exploratory v6.5の紹介
takatoshiroto
0
5.1k
コンバージョン率と信頼区間の推移を可視化する方法
takatoshiroto
1
310
Exploratory Hour #104 - 別の列の値をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
0
200
Exploratory Hour #105 - 元のデータ順をもとに、カテゴリー列の値の順序を指定したい
takatoshiroto
1
250
Exploratory Hour #102 - complete関数を使って2つの時間の間の値を生成したい
takatoshiroto
0
110
Exploratory Hour #103 - 仕事の開始・終了時間データから、どの時間に何人働いているか知りたい
takatoshiroto
0
110
Exploratory v6.4の紹介
takatoshiroto
0
5.8k
Other Decks in Technology
See All in Technology
SRE本出版からまもなく10年!〜これまでに何が起こり、これから何が起こるのか〜
katsuhisa91
PRO
0
350
Developer 以外にこそ使って欲しい Amazon Q Developer
mita
0
160
ホワイトボックス& SONiC アーキテクチャ(全体像) - SONiC Workshop Japan 2025
ebiken
PRO
1
160
UIパフォーマンス最適化: AIを活用して100倍の速度向上を実現した事例
kinocoboy2
1
410
RubyKaigi NOC 近況 2025
sorah
3
1.1k
Azure × MCP 入門
ry0y4n
8
1.9k
Software Architecture in an AI-Driven World
atty303
48
18k
Ninno LT
kawaguti
PRO
1
120
20 Years of Domain-Driven Design: What I’ve Learned About DDD
ewolff
1
380
Docker Compose で手軽に手元環境を実現する / Simplifying Local Environments with Docker Compose #CinemaDeLT
nabeo
0
230
Amplifyとゼロからはじめた AIコーディング。失敗と気づき
mkdev10
1
150
テストコードにはテストの意図を込めよう(2025年版) #retechtalk / Put the intent of the test 2025
nihonbuson
PRO
10
1.8k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Site-Speed That Sticks
csswizardry
6
550
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
179
53k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Fontdeck: Realign not Redesign
paulrobertlloyd
84
5.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
Adopting Sorbet at Scale
ufuk
76
9.4k
A Tale of Four Properties
chriscoyier
159
23k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Transcript
EXPLORATORY 1
2 εϐʔΧʔ നށ ܟొ Customer Succes EXPLORATORY ུྺ େֶࡏֶதʹϑʔυϩεΛݮΒͨ͢ΊʹɺֶੜஂମΛ্ཱͪ͛දΛ ΊΔɻͦͷޙɺϏδωεΛΔͨΊʹԽֶϝʔΧʔͷσϡϙϯͱ
ϑʔυςοΫܥελʔτΞοϓͰӦۀͱϚʔέςΟϯάΛܦݧɻΞϓ ϦͷͷͨΊʹσʔλαΠΤϯε͕ඞཁͩͱײ͡ɺΞϓϦʹಛԽ ͨ͠ϢʔβʔͷߦಈੳπʔϧΛ։ൃ͢ΔاۀʹͯɺΞϓϦۀքͷ KPIੳͳͲΛ୲͢ΔɻݱࡏExploratory, Inc. ͰΧελϚʔαΫη εΛ୲͢ΔΒɺσʔλͷՄࢹԽͱ୳ࡧతσʔλੳΛઐͱͯ͠ σʔλαΠΤϯεͷීٴʹऔΓΉɻ @ShirotoTakato
Vision ͯ͢ͷਓ͕σʔλΛͬͯ ΑΓΑ͍ҙࢥܾఆΛ͢Δ
Mission ΞφϦςΟΫεͷຽओԽ
5 ୈ̏ͷ σʔλαΠΤϯεɺAIɺػցֶश౷ܭֶऀɺ։ൃऀͷͨΊ͚ͩͷͷͰ͋Γ·ͤΜɻ σʔλʹڵຯͷ͋ΔਓͳΒ୭͕ੈքͰ࠷ઌͷΞϧΰϦζϜΛͬͯ ϏδωεσʔλΛ؆୯ʹੳͰ͖Δ͖Ͱ͢ɻ Exploratory͕ͦ͏ͨ͠ੈքΛՄೳʹ͠·͢ɻ
ୈ1ͷ ୈ̎ͷ ୈ̏ͷ ϓϥΠϕʔτ(ߴ͍/ݹ͍) Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ϓϩάϥϛϯά ϓϩάϥϛϯά 2016
2000 1976 ϚωλΠθʔγϣϯ ίϞσΟςΟԽ ຽओԽ ౷ܭֶऀ σʔλαΠΤϯςΟετ Exploratory ΞϧΰϦζϜ Ϣʔβʔɾ ମݧ πʔϧ Φʔϓϯɾιʔε(ແྉ/࠷ઌ) UI & ࣗಈԽ ϏδωεɾϢʔβʔ ςʔϚ σʔλαΠΤϯεͷຽओԽ
࣭ σʔλαΠΤϯεɾϫʔΫϑϩʔ ͑Δ σʔλΞΫηε Ճ ՄࢹԽ ػցֶशɾAI ౷ܭ ϓϩάϥϛϯά
࣭ ExploratoryͰ؆୯ʹͰ͖ΔλεΫ ͑Δ σʔλΞΫηε Ճ ՄࢹԽ ػցֶशɾAI ౷ܭ UI
9 ૬खʹ͑͘͢ͳΔσʔλͷՄࢹԽ
୳ࡧతσʔλੳͱઆ໌తσʔλੳ 10
୳ࡧతσʔλੳ &YQMPSBUPSZ%BUB"OBMZTJT આ໌తσʔλੳ &YQMBOBUPSZ%BUB"OBMZTJT ༧ଌ·ͨকདྷΛίϯτϩʔϧ͢ΔͨΊʹɺσʔλʹରͯͨ͠ ͘͞Μͷ࣭Λ͔͚͛ɺ͑Λ୳͍ͯ͘͜͠ͱͰɺΑΓΑ͍ ԾઆΛߏங͍ͯͨ͘͠Ίͷੳख๏ɻ ୳ࡧతσʔλੳͰಘͨΠϯαΠτΛɺετʔϦʔνϟʔτ
Λۦͯ͠૬खʹ͑ΔͨΊͷख๏ɻ
Data Visualization 12
จ๏Λཧղ͍ͯ͠ͳ͍ͱɻɻɻ 13
14
15
εέʔϧ͕͓͔͍͠ 16
17
18
19 ֯ ֯ 19
֯ ֯ɹ+ ɹϘϦϡʔϜ 20
ͳͥΈΜͳύΠνϟʔτ͕ݏ͍ͳͷ͔ • ੳʹ͍ͯͳ͍ • ใྔ͕গͳ͍ 21
ਓؒͷൺΔͱ͖͞ͷ΄͏͕ಘҙ 22
Ͳͷ৭͕Ұ൪େ͖͍͔ʁ Ͳ͏͍͏ॱ൪͔ʁ 23
24 24
25 25
26 26
27 σʔλͷՄࢹԽͷ ཪʹ͋ΔαΠΤϯε
28 νϟʔτͷλΠϓΛ֮͑ΔͷͰͳ͘ɺ νϟʔτΛߏ͢ΔϧʔϧΛཧղ͢Δɻ
29 νϟʔτΛߏ͢ΔϧʔϧΛཧղ͢Δɻ ՄࢹԽͷจ๏
30 The Grammar of Graphics ϦʔϥϯυɾΟϧΩϯιϯ ౷ܭιϑτͰ͋ΔSYSTATΛ։ൃͨ͠ίϯϐϡʔλ౷ܭֶऀͰ͋Δɻ 1980ʹSYSTATΛ։ൃ͠ɺͦͷޙ1995ʹSPSSࣾʹSYSTATΛ ച٫ͨ͠ɻ
31 0 10 20 30 0 10 20 30
32 0 10 20 30 0 10 20 30
33 0 10 20 30 0 10 20 30 ࠲ඪγεςϜ
εέʔϧ ϏδϡΞϧɾΩϡʔ ʢࢹ֮ʹૌ͑Δ߹ਤʣ
34 0 500 10000 ຊ US υΠπ
35 0 500 10000 ຊ US υΠπ
36 0 500 10000 ຊ US υΠπ ࠲ඪγεςϜ εέʔϧ ϏδϡΞϧɾΩϡʔ
37 0 500 10000 ຊ US υΠπ ࠲ඪγεςϜ εέʔϧ ϏδϡΞϧɾΩϡʔ
ަ࠲ඪʢX࣠ͱY࣠ʣ
38 ࠲ඪγεςϜ σΧϧτ࠲ඪܥ ʢަ࠲ඪʣ ۃ࠲ඪʢԁ࠲ඪʣ ཧ࠲ඪ X࣠ͱY࣠
39 0 500 10000 ຊ US υΠπ ࠲ඪγεςϜ εέʔϧ ϏδϡΞϧɾΩϡʔ
ΧςΰϦʔ vs.
εέʔϧ - ϦχΞ - ର ΧςΰϦʔ ॱং͖ΧςΰϦʔ
- ύʔηϯτ ࣌ؒ 40
41 ϦχΞ
42 ΧςΰϦʔ
43 ׂ߹
44 ࣌ؒ
45 0 500 10000 ຊ US υΠπ ࠲ඪγεςϜ εέʔϧ ϏδϡΞϧɾΩϡʔ
Ґஔ ͞ ֯ ํ αΠζ ܗ ༰ྔ ৭ͷೱ୶ ৭ͷछྨ ϏδϡΞϧɾΩϡʔ
ಘҙ ಘҙ͡Όͳ͍ 46
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 47
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 48
Ґஔ 49
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 50
͞ 51
52 vs.
53 ͞
54 ͞
55
56
• ʮ͞ʢόʔνϟʔτʣʯΛ͏ͱɺͲΕ͕࠷ଟ͍͔ʢগͳ͍ ͔ʣɺͲ͏͍͏ॱ൪͔ɺͦΕͧΕͷόʔͷؒͷେ͖͞ͷҧ͍Λײ తʹཧղ͍͢͠ɻ • ʮҐஔʢόϒϧʣʯΛ͏ͱɺͲΕ͕࠷ଟ͍͔ʢগͳ͍͔ʣɺͲ ͏͍͏ॱ൪͔ͱ͍͏͜ͱ͕ཧղ͍͕͢͠ɺ͞ΒʹͲ͏͍ͬͨύ λʔϯʢάϧʔϓ͚ʣ͕͋Δ͔ײతʹΘ͔Δɻ 57
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 58
֯ 59
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 60
ํ 61
αΠζ ܗ ༰ྔ ৭ͷೱ୶ ৭ͷछྨ ϏδϡΞϧɾΩϡʔ 62
αΠζ 63
64 Ґஔ
65 Ґஔ αΠζ ʴ
৭ͷछྨ 66
67 w ͷେ͖͞Λද͢৭ w σʔλΛ۠ผ͢ΔͨΊͷ৭ w Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭ ৭ͷछྨ
68 w ͷେ͖͞Λද͢৭ w σʔλΛ۠ผ͢ΔͨΊͷ৭ w Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭ ৭ͷछྨ
69 σʔλͷͷେ͖͞Λද͢৭
70 σʔλͷͷେ͖͞Λද͢৭
71 w ͷେ͖͞Λද͢৭ w σʔλΛ۠ผ͢ΔͨΊͷ৭ w Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭ ৭ͷछྨ
72 σʔλΛ۠ผ͢ΔͨΊͷ৭
73 σʔλΛ۠ผ͢ΔͨΊͷ৭
74 σʔλΛ۠ผ͢ΔͨΊͷ৭
75 w ͷେ͖͞Λද͢৭ w σʔλΛ۠ผ͢ΔͨΊͷ৭ w Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭ ৭ͷछྨ
Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭
Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭
Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭
Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭
νϟʔτͷબͼํͷΨΠυϥΠϯ 80
Β͖ͭͱ૬ؔͷՄࢹԽ
Β͖ͭͷՄࢹԽ
σʔλΒͭ͘ 83
$6,503 Β͖ͭ ฏۉ $15,000 $1,000
$6,503 ฏۉ
86 σʔλλΠϓʹ߹Θͤͯ νϟʔτΛ͍͚Δʂ
࿈ଓσʔλ vs. ΧςΰϦʔσʔλ 87
࿈ଓσʔλ vs. ΧςΰϦʔσʔλ 88
• (numeric) • ɾ࣌ؒʢDateʣ 89
0 10 20 30 40 50 11 22 45
90 ࿈ଓੑ͕͋Δ ॱং͕ؔ͋Δ
91 ώετάϥϜ ີۂઢ όʔ
Γ͍ͨ͜ͱ • ͲͷΑ͏ʹσʔλ͍ͯ͠Δ͔ɻ • Ͳͷ͕ͬͱස͕ߴ͍͔ʁͳ͔ͥʁ • Ͳͷ͕͍͔͠ʁͳ͔ͥʁͦΕظ௨Γ͔ʁ • ҙ֎ͳύλʔϯ͕ݟ͑Δ͔ʁͳͥͦ͏ͳͷ͔ʁ 92
ώετάϥϜ 93
94 σʔλͷΛɺΛ͍͔ͭ͘ͷ۠ըʢόέοτʣʹ͚ɺ ͦΕͧΕͷ۠ըʹ͋ΔσʔλͷྔʢߦʣΛόʔΛͬͯද͢ɻ
ྫ - ͷΒ͖ͭͷՄࢹԽ 95 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ
96 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
97 څྉͷΒ͖͕ͭՄࢹԽ͞Εͨɻ
98 όέοτͷΛ্͛Δ͜ͱͰɺ͍͔ͭ͘ͷࢁ͕ݟ͑ͯ͘Δɻ
99 όέοτͷΛ100·Ͱ্͛ͯΈΔɻ
100 όέοτͷΛ্͛Δ͜ͱͰɺ͍͔ͭ͘ͷࢁ͕ݟ͖͑ͯͨɻ
101 ͜͏ͨ͠ࢁɺผͷάϧʔϓʹଐ͍ͯ͠Δͷ͔͠Εͳ͍ɻ
102 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
103 2ͭͷώετάϥϜ͕ॏͳΓ߹͍ͬͯΔɻ உঁؒͰ͖͋Β͔ͳҧ͍ͳ͍Α͏ͩɻ
104 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
105 Managerʢʣͷάϧʔϓڅྉͷߴ͍άϧʔϓɺSales Repʢԫʣͱ Research ScientistʢϐϯΫʣͷάϧʔϓڅྉͷ͍άϧʔϓͷΑ͏ͩɻ
ີۂઢ 106
107 • σʔλͷΛ͔ΒͳۂઢΛͬͯද͢ • ॎ࣠σʔλͷີΛ͋ΒΘ͢ɻ
108 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
109 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
110
111 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
112 உঁͷؒʹͪΐͬͱͨ͠ҧ͍͋ΔΑ͏ͩɻ
113 1. څྉͷΒ͖ͭΛՄࢹԽ͢Δ 2. څྉͷΒ͖ͭஉঁ͝ͱʹҧ͍͕͋Δ͔ʁ 3. څྉͷΒ͖ͭ৬छ͝ͱʹҧ͍͕͋Δ͔ʁ ྫ - ͷΒ͖ͭͷՄࢹԽ
114 ৬छ͝ͱͷڅྉͷΒ͖ͭͷҧ͍ώετάϥϜΑΓΘ͔Γ͍͢ɻ
ີۂઢ ώετάϥϜ ಉ͡σʔλΛҟͳΔνϟʔτͰՄࢹԽ
࿈ଓσʔλ vs. ΧςΰϦʔσʔλ 116
iPad iPhone MacBook AirPods AppleTV ࿈ଓੑͳ͠ ΧςΰϦʔܕ 117
118 ώετάϥϜ ີۂઢ όʔνϟʔτ ΧςΰϦʔͷΒ͖ͭՄࢹԽ
119 • ΧςΰϦʔ͝ͱͷ݅ΛՄࢹԽɻ • ͲͷΧςΰϦʔʹσʔλ͕ू·͍ͬͯΔͷ͔ʁ • σʔλͷྔʹΑΔύλʔϯ͋Δ͔ʁ Γ͍ͨ͜ͱ
120 1. ৬छͷΒ͖ͭΛՄࢹԽ͢Δ 2. ৬छͷΒ͖ͭஉঁؒͰҧ͍͕͋Δ͔ΛՄࢹԽ͢ Δɻ ྫ - ΧςΰϦʔͷΒ͖ͭΛՄࢹԽ
121 1. ৬छͷΒ͖ͭΛՄࢹԽ͢Δ 2. ৬छͷΒ͖ͭஉঁؒͰҧ͍͕͋Δ͔ΛՄࢹԽ͢ Δɻ ྫ - ΧςΰϦʔͷΒ͖ͭΛՄࢹԽ
122 ৬छ͝ͱͷਓΛՄࢹԽɻ
123
124 1. ৬छͷΒ͖ͭΛՄࢹԽ͢Δ 2. ৬छͷΒ͖ͭஉঁؒͰҧ͍͕͋Δ͔ΛՄࢹԽ͢ Δɻ ྫ - ΧςΰϦʔͷΒ͖ͭΛՄࢹԽ
None
૬ؔͷՄࢹԽ 126
127 2ͭͷมͷ͏ͪɺ1ͭͷมͷ͕มΘΔͱ ͏1ͭͷมͷҰఆͷنଇΛ࣋ͬͯ ͍ͬ͠ΐʹมΘΔؔɻ ૬ؔ
128 Association Correlation 2ͭͷมͷؒʹԿΒ͔ ͷ͕ؔ͋Δɻ AssociationͷதͰಛʹͦͷ ͕ؔઢܗʢઢʣͷͷɻ ૬ؔ
129 US UK Japan 5000 2500 Country Monthly Income 0
Association
130 ྸ څྉ Correlation
131 ڧ͍ਖ਼ͷ ૬ؔؔ ૬ؔؔͳ͠ ڧ͍ෛͷ ૬ؔؔ 0 1 -1 0.5
-0.5 ૬ؔʢCorrelationʣ
132 ͳͥ૬ؔΛཧղ͍ͨ͠ͷ͔ʁ
133 Β͖ͭ ฏۉ 5000 100
134 Β͖ͭ $20,000 $1,000 څྉ
135 Β͖ͭ ͜ͷձࣾͷڅྉ ͍͘Β͘Β͍ʁ $20,000 $1,000 څྉ
136 Β͖ͭ ෆ࣮֬ੑ $20,000 $1,000 څྉ ͜ͷձࣾͷڅྉ ͍͘Β͘Β͍ʁ
137 0 30 20 ͠૬ؔؔΛݟ͚ͭΔ͜ͱ͕Ͱ͖Δͱɻɻɻ 10 $20,000 $1,000 څྉ ۈଓ
138 0 30 20 10 $20,000 $1,000 څྉ ۈଓ ۈଓ͕20ͩͱ
څྉ$15,000͘Β͍ɻ $15,000
139 ෆ࣮֬ੑ͕ݮΔ 0 30 20 څྉ ۈଓ ૬ؔ Β͖ͭ $20,000
$1,000 $15,000 $20,000 $1,000
140 ૬ؔ ෆ࣮֬ੑ͕ݮΔ US UK Japan 5000 100 Β͖ͭ
141 US UK Japan དྷ݄ͷސ٬ USͰ͋Εɺ 4000͔Β5000ͷؒɻ 5000 4000 ૬ؔ
ڧ͍૬ؔؔͷ͋ΔͷΛݟ͚ͭΔ͜ͱ͕Ͱ͖Ε څྉ͕Ͳ͏มΘΔ͔Λઆ໌͘͢͠ͳΔɻ ·ͨɺڅྉΛ༧ଌ͘͢͠ͳΔ
૬ؔؔͱҼՌؔҧ͏ɻ ҼՌؔ૬ؔؔͷಛผͳλΠϓɻ ؍ͨ͠૬͕ؔؔɺҼՌؔͩͱ֬ೝ͢Δࣄ͕Ͱ͖ͨ ΒɺͦͷใΛ࣋ͬͯকདྷΛίϯτϩʔϧ͢Δ͜ͱ͕Ͱ ͖Δɻ
૬ؔͷՄࢹԽ 144
145 ࢄਤ ശͻ͛ਤ όΠΦϦϯਤ ώʔτϚοϓ ີۂઢ όʔɾνϟʔτ
146 • ΧςΰϦʔ vs. • vs. •
ΧςΰϦʔ vs. ΧςΰϦʔ σʔλͷλΠϓͷΈ߹Θͤ
147 • ΧςΰϦʔ vs. • vs. •
ΧςΰϦʔ vs. ΧςΰϦʔ σʔλͷλΠϓͷΈ߹Θͤ
148 ࢄਤ ശͻ͛ਤ όΠΦϦϯਤ ώʔτϚοϓ ີۂઢ όʔɾνϟʔτ
149 ώετάϥϜɺີۂઢʹ৭Λ͏͜ͱͰɺ ΧςΰϦʔͱͷ૬ؔΛՄࢹԽ͢Δ͜ͱ͕Ͱ͖Δɻ
150 څྉʢʣx ৬छʢΧςΰϦʔʣ
151 څྉʢʣx ৬छʢΧςΰϦʔʣ
152 ͔͠͠ɺΧςΰϦʔͱͷؔΛݟΔ࣌ ശώήਤΛͬͨ΄͏͕ɺΘ͔Γ͍͢ɻ ʢҰൠతʹɻʣ
ശώήਤ 153
None
ͦΕͧΕͷαΠζʢߦͷʣ͕͘͠ͳΔΑ͏ʹ̐ͭͷάϧʔϓʹ͚Δɻ
3Q (ୈ3࢛Ґ/ 75ύʔηϯλΠϧ) 2Q (ୈ2࢛Ґ/ 50ύʔηϯλΠϧ) 1Q (ୈ1࢛Ґ/ 25ύʔηϯλΠϧ)
3Q Median 1Q
3Q Median 1Q
3Q Median 1Q ࠷େ ࠷খ
ྫ - ΧςΰϦʔͱͷ૬ؔͷՄࢹԽ 160 1. ৬छͱڅྉͷ૬ؔΛՄࢹԽ͢Δ 2. ৬छͱڅྉͷஉঁผͷ૬ؔΛՄࢹԽ͢Δ
161 1. ৬छͱڅྉͷ૬ؔΛՄࢹԽ͢Δ 2. ৬छͱڅྉͷஉঁผͷ૬ؔΛՄࢹԽ͢Δ ྫ - ΧςΰϦʔͱͷ૬ؔͷՄࢹԽ
162 ৬छʢΧςΰϦʔʣ x څྉʢʣ
ྫ - ΧςΰϦʔͱͷ૬ؔͷՄࢹԽ 163 1. ৬छͱڅྉͷ૬ؔΛՄࢹԽ͢Δ 2. ৬छͱڅྉͷஉঁผͷ૬ؔΛՄࢹԽ͢Δ
164
165 • ΧςΰϦʔ vs. • vs. •
ΧςΰϦʔ vs. ΧςΰϦʔ σʔλͷλΠϓͷΈ߹Θͤ
166 ࢄਤ ശͻ͛ਤ όΠΦϦϯਤ ώʔτϚοϓ ີۂઢ όʔɾνϟʔτ
167 ࢄਤ
168 • ओʹσʔλಉ࢜ͷΛදࣔ͢Δɻ • ͦΕͧΕͷͦΕͧΕͷσʔλʹ૬͢Δɻ
ྫɿͱͷؒͷ૬ؔͷՄࢹԽ 169 1. څྉͱྸͷؔΛՄࢹԽ͢Δɻ 2. څྉͱۈଓͷؔΛՄࢹԽ͢Δɻ 3. څྉͱۈଓͷ૬ؔؔ৬छʹΑͬͯҧ͏͔ௐ Δɻ
170 ྸʢʣ x څྉʢʣ
171 τϨϯυϥΠϯͷػೳΛ͏ͱɺ ૬͕ؔΘ͔Δɻ
ྫɿͱͷؒͷ૬ؔͷՄࢹԽ 172 1. څྉͱྸͷؔΛՄࢹԽ͢Δɻ 2. څྉͱۈଓͷؔΛՄࢹԽ͢Δɻ 3. څྉͱۈଓͷ૬ؔؔ৬छʹΑͬͯҧ͏͔ௐ Δɻ
173 ۈଓʢʣ x څྉʢʣ
174 ۈଓͱڅྉͷ૬ؔ0.77Ͱɺൺֱతڧ͍ਖ਼ͷ૬͕ؔ͋Δɻ
ྫɿͱͷؒͷ૬ؔͷՄࢹԽ 175 1. څྉͱྸͷؔΛՄࢹԽ͢Δɻ 2. څྉͱۈଓͷؔΛՄࢹԽ͢Δɻ 3. څྉͱۈଓͷ૬ؔؔ৬छʹΑͬͯҧ͏͔ௐ Δɻ
176 ૬ؔͷڧ͞৬छʹΑͬͯҧ͏ɻ
177 • ΧςΰϦʔ vs. • vs. •
ΧςΰϦʔ vs. ΧςΰϦʔ σʔλͷλΠϓͷΈ߹Θͤ
178 ࢄਤ ശͻ͛ਤ όΠΦϦϯਤ ώʔτϚοϓ ີۂઢ όʔɾνϟʔτ
179 ΧςΰϦʔ vs. ΧςΰϦʔ ΧςΰϦʔಉ࢜ͷؔΛݟΔʹɺΧςΰϦʔͷ Έ߹Θͤ͝ͱʹΛ্͑͛Δ͔ɺͦͷશମʹ ର͢Δׂ߹Λܭࢉͦ͠ͷ݁ՌΛՄࢹԽ͢Δɻ
180 1. ৬छͱڭҭͷؒͷؔΛՄࢹԽɻ 2. ৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ 3. ৬छͱڅྉͷؒͷؔΛՄࢹԽɻ 4. څྉͱۈଓͷؒͷؔΛՄࢹԽɻ ྫɿΧςΰϦʔͱΧςΰϦʔͷؒͷؔΛՄࢹԽ
181 1. ৬छͱڭҭͷؒͷؔΛՄࢹԽɻ 2. ৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ 3. ৬छͱڅྉͷؒͷؔΛՄࢹԽɻ 4. څྉͱۈଓͷؒͷؔΛՄࢹԽɻ ྫɿΧςΰϦʔͱΧςΰϦʔͷؒͷؔΛՄࢹԽ
৬छ (ΧςΰϦʔ) vs.ڭҭ (ΧςΰϦʔ)
183 1. ৬छͱڭҭͷؒͷؔΛՄࢹԽɻ 2. ৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ 3. ৬छͱڅྉͷؒͷؔΛՄࢹԽɻ 4. څྉͱۈଓͷؒͷؔΛՄࢹԽɻ ྫɿΧςΰϦʔͱΧςΰϦʔͷؒͷؔΛՄࢹԽ
৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ ৬छ (ΧςΰϦʔ) vs. ୀ৬ (ϩδΧϧ)
• ϩδΧϧܕΧςΰϦΧϧܕͷಛघͳ߹ɻ • TRUE ͔ FALSEͷ2ͭͷͷΈΛ࣋ͭɻ
California Texas New York Florida Oregon ΧςΰϦʔܕ 186
ϩδΧϧ (ཧ) TRUE FALSE ࣙΊͨ? 187 ̎ͭͷ͔͠ͱΒͳ͍ΧςΰϦʔ
৬छ (ΧςΰϦʔ) vs. ୀ৬ (ϩδΧϧ)
189 1. ৬छͱڭҭͷؒͷؔΛՄࢹԽɻ 2. ৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ 3. ৬छͱڅྉͷؒͷؔΛՄࢹԽɻ 4. څྉͱۈଓͷؒͷؔΛՄࢹԽɻ ྫɿΧςΰϦʔͱΧςΰϦʔͷؒͷؔΛՄࢹԽ
৬छ (ΧςΰϦʔ) vs. څྉ () ৬छͱڅྉͷؒͷؔΛՄࢹԽ
څྉ (ΧςΰϦʔ) ΧςΰϦʔԽ ৬छ (ΧςΰϦʔ) vs. څྉ ()
څྉʢʣ
څྉʢΧςΰϦʔʣ
ΧςΰϦʔԽͷઃఆ
څྉ (ΧςΰϦʔ)ɹvs. ৬छ (ΧςΰϦʔ)
196 1. ৬छͱڭҭͷؒͷؔΛՄࢹԽɻ 2. ৬छͱୀ৬͔ͨ͠Ͳ͏͔ͷؒͷؔΛՄࢹԽɻ 3. ৬छͱڅྉͷؒͷؔΛՄࢹԽɻ 4. څྉͱۈଓͷؒͷؔΛՄࢹԽɻ ྫɿΧςΰϦʔͱΧςΰϦʔͷؒͷؔΛՄࢹԽ
څྉ (ΧςΰϦʔ) vs. ۈଓ (ΧςΰϦʔ)
198 ώʔτϚοϓ ΧςΰϦʔؒͷΈ߹Θͤ͝ͱʹूܭͨ͠Λ৭Ͱදࣔ
199 ৬छͱڭҭͷؔΛώʔτϚοϓͰՄࢹԽ͢Δɻ
200 ৬छͱઐ߈ͷਓͷ͕ؔώʔτϚοϓͰՄࢹԽ͞Εͨɻ
201 Life Science͕ઐ߈ͰResearch Scientistͷ৬ʹ͍͍ͭͯΔਓ 133ਓ͓Γɺ৬छͱઐ߈ͷΘͤ ͷதͰҰ൪ଟ͍ɻ
202 νϟʔτͷબͼํ·ͱΊ
σʔλͷΒ͖ͭΛݟ͍ͨͱ͖ͷνϟʔτͷબͼํ ώετάϥϜ ີۂઢ όʔνϟʔτ σʔλ ΧςΰϦʔσʔλ
204 ࢄਤ ശͻ͛ਤ όΠΦϦϯਤ ώʔτϚοϓ ີۂઢ όʔɾνϟʔτ ΧςΰϦʔσʔλͱσʔλ σʔλͱσʔλ ΧςΰϦʔσʔλͱΧςΰϦʔσʔλ
σʔλͷ૬ؔΛݟ͍ͨͱ͖ͷνϟʔτͷબͼํ
205 ετʔϦςϦϯά×σʔλͷՄࢹԽ
நతͳ୯ޠใΛཏྻͨ͠ΓɺՕॻ͖ͷࣄ࣮౷ܭσʔλ ΛͬͨཧతͳͰɺ૬ख͔ΒͷڞײɺߦಈಘΒΕͳ͍
"͞ΜڅྉΛ্͍͛ͨͨΊస৬Λߟ͍͑ͯΔ γϦίϯόϨʔͷσʔλαΠΤϯςΟετͷฏۉऩສͩͱΔ σʔλαΠΤϯςΟετΛࢦ͢
"͞Μ64ͷΤϯδχΞͰ࠺ͱਓͷࢠڙͱΒ͍ͯ͠Δ "͞Μͷࢠڙࢲཱͷେֶʹߦ͖͍ͨͱݴ͍ͬͯΔ͕ɺݱࡏͷऩͰࢠ ڙ͕ߦ͖͍ͨେֶʹ௨ΘͤΔ༨༟͕ͳ͍ ͦͷͨΊɺస৬ͯͬ͠ͱՔ͛Δ৬ʹब͖͍ͨͱࢥ͍ͬͯΔ ௐͯΈΔͱɺ"NB[POͰଟֹͷඅ༻Λ͔͚ͯσʔλαΠΤϯςΟετ Λҭ͢ΔϓϩάϥϜΛ͢Δ༧ఆΒ͍͠ σʔλαΠΤϯςΟετͷधཁ͕ߴ·͍ͬͯΔͷͱɺݩʑେֶӃͰ౷ܭֶ Λͬͯݚڀ͍ͯͨ͜͠ͱ͋ΓɺσʔλαΠΤϯςΟετస৬͢Δಓ Λߟ͍͑ͯΔ
૬खʹ͍͑ͨ͜ͱΛɺͦΕΛىͤ͞ΔΤϐιʔυͳͲͷlޠzΛ ͏͜ͱʹΑͬͯɺฉ͖खʹڧ͘ҹ͚Δख๏ͷ͜ͱͰ͢ɻ ετʔϦʔςϦϯά
اۀͷ՝Λղܾ͢ΔͨΊʹ౷ܭػցֶशͷϞσϧΛͬͯσʔλ ͷதʹ͋ΔύλʔϯΛݟग़͠ɺϏδωεΛվળ͍ͯ͘͠ σʔλαΠΤϯε
ετʔϦςϦϯά ײੑ ºσʔλαΠΤϯε ཧੑ
ετʔϦςϦϯάºσʔλαΠΤϯε w ࢝·Γɿઃఆͱత w தؒɹɿঢ়گ֬ೝͱղܾࡦ w ऴΘΓɿ૬खʹͲΜͳߦಈΛͯ͠ཉ͍͔͠
ετʔϦςϦϯάºσʔλαΠΤϯε ࢝·Γ ઃఆɿ͍ͭͲ͜ͰͦͷετʔϦʔ͕ى͖͍ͯΔ͔ ओਓެɿ୭͕ߦಈͷओମ͔ ɿԿ͕͔ తɿͲͷঢ়ଶ͕ཧ͔
ετʔϦςϦϯάºσʔλαΠΤϯε தؒ Λઆ໌͢ΔͨΊͷྫ Λࣔ͢σʔλ ΞΫγϣϯ͕औΕͳ͔ͬͨ߹Ͳ͏ͳΔͷ͔ ʹରॲ͢ΔͨΊͷબࢶ
ղܾࡦͷϝϦοτ ͳͥ૬खʹҙࢥܾఆߦಈΛىͯ͜͠ཉ͍͠ͷ͔
ετʔϦςϦϯάºσʔλαΠΤϯε ऴΘΓ ·ͱΊ ૬खʹͯ͠ཉ͍͠ߦಈΛݺͼ͔͚Δ
216 ૬खʹ͑ΔͨΊͷσʔλͷՄࢹԽ
ྫɿຊͷ(%1
(%1ͷॱҐΛݟ͍ͤͨͱ͖Ͳͬͪͷνϟʔτ͕͍͍͔ʁ
ຊͷ(%1ͷτϨϯυΛݟ͍ͤͨͱ͖Ͳͬͪͷνϟʔτ͕͍͍͔ʁ
ຊͷ(%1ͷτϨϯυΛݟ͍ͤͨͱ͖Ͳͬͪͷνϟʔτ͕͍͍͔ʁ
ຊͷ(%1ͷΛݟ͍ͤͨͱ͖Ͳͬͪͷνϟʔτ͕͍͍͔ʁ
૬खʹԿΛ͍͑ͨͷ͔ʹΑͬͯ νϟʔτͷछྨ৭ͷ͍ํΛ͢Δ
Ґஔ ͞ ֯ ํ ϏδϡΞϧɾΩϡʔ 223
224 ͞ ൺֱ͍ͨ͠ͱ͖
225 άϧʔϓΛݟ͍ͨͱ͖
ํ 226 τϨϯυΛݟ͍ͨͱ͖
227 w ͷେ͖͞Λද͢৭ w σʔλΛ۠ผ͢ΔͨΊͷ৭ w Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͢ΔͨΊͷ৭ ৭ͷछྨ
228 άϧʔϓ͝ͱʹൺֱ͍ͨ͠ͱ͖
Ұ෦ͷσʔλΛڧௐ ϋΠϥΠτ ͍ͨ͠ͱ͖
૬खʹ্ख͑͘ΔͨΊʹ ετʔϦʔςϦϯάͷߏͱՄࢹԽͷจ๏Λ ҙࣝ͠ͳ͕Βͻͨ͢Β࿅श͢ΔͷΈʂ
None
&%"4BMPO w ຖ݄͓Λग़͠·͢ w ͦΕͧΕͷڵຯʹ߹Θͤͯ୳ࡧతʹσʔλੳͯ͠Β͍·͢ w ϊʔτʹॻ͍ͯΠϯαΠτͷڞ༗ w 5XJUUFSͳͲͰϑΟʔυόοΫˍσΟεΧογϣϯ
ੈքͷେֶϥϯΩϯάσʔλ ੈքͷՈசੜ࢈ྔσʔλ
ͦΕͧΕͷڵຯʹ߹Θͤͯ୳ࡧతʹσʔλੳ
ϊʔτʹॻ͍ͯΠϯαΠτͷڞ༗
5XJUUFSͳͲͰϑΟʔυόοΫˍσΟεΧογϣϯ
࣍ճͷ͓
ࣗసंͷϨϯλϧσʔλ
&%"4BMPO ৄࡉͪ͜Β͔Βʂ &%"4BMPO୳ࡧతσʔλੳΛΈΜͳͰֶͿ IUUQTCJUMZ98LG3 &%"4BMPOͷࢀՃํ๏ IUUQTCJUMZ-4PNF,
5XJUUFS&%"4BMPO
None
• ϓϩάϥϛϯάͳ͠ RݴޠͷUIͰ͋ΔExploratoryΛੳπʔϧͱͯ͠༻͢ΔͨΊडߨதɺϏδωεͷ Λղܾ͢ΔͨΊʹඞཁͳσʔλαΠΤϯεͷख๏ͷशಘʹ100ˋूதͰ͖Δ • πʔϧͷ͍ํͰͳ͘ɺੳख๏ͷशಘ ݱͰ͑Δੳख๏ΛάϧʔϓԋशΛ௨࣮ͯ͠ࡍʹखΛಈ͔͠ͳ͕Βɺʹ͚ͭͯߦ͘ ͜ͱ͕Ͱ͖Δɻ • ࢥߟྗͱεΩϧͷशಘ
σʔλαΠΤϯεͷεΩϧशಘ͚ͩͰͳ͘ɺσʔλੳʹඞཁͳࢥߟྗशಘͰ͖Δ ಛ
Q & A
Contact Email
[email protected]
EDA SalonͷࢀՃํ๏ https://bit.ly/2LSomeK Twitter @ExploratoryJp EDA Salonৄࡉ
https://bit.ly/2XWkfR5