Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACL読み会2024@名大 REANO: Optimising Retrieval-Augme...
Search
Takuma Matsubara
September 29, 2024
Science
0
240
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
Takuma Matsubara
September 29, 2024
Tweet
Share
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
1.1k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
380
Accelerated Computing for Climate forecast
inureyes
0
120
機械学習 - pandas入門
trycycle
PRO
0
330
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
1.2k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
170
Hakonwa-Quaternion
hiranabe
1
140
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
660
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
120
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
110
Symfony Console Facelift
chalasr
2
480
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
290
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Bash Introduction
62gerente
615
210k
Agile that works and the tools we love
rasmusluckow
331
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
KATA
mclloyd
PRO
32
15k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
RailsConf 2023
tenderlove
30
1.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Transcript
REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation Jinyuan
Fang, Zaiqiao Meng, Craig Macdonald University of Glasgow 読み⼿: 松原拓磨(豊⽥⼯⼤) 図表は論⽂,[1]より [1] Izacard et al., 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL.
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 2 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 3 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages Readerモデルに注⽬
問題提起と提案の概要 • 従来のReaderモデルではPassage間の依存を無視 ØPassegesからKGを構築することで,マルチホップな推論が可能 2024/9/30 ACL2024読み会@名⼤ 4 Fusion-in-Decoder (FiD) PassagesからKGを補完
情報が⾜りない
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 5
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 6
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 7
KG Generator 2024/9/30 ACL2024読み会@名⼤ 8 • 既存の知識にない情報を補完したKGを作成 • Intra-context RE(⽂脈内関係抽出)
• 関係抽出モデルDocuNetによりPassagesから関係トリプルを獲得 • Inter-context RE(⽂脈間関係抽出) • Wikidataから関係トリプルを獲得 • Graph Neural Network (GNN) • Entityの埋め込みを獲得
Answer Predictor 2024/9/30 ACL2024読み会@名⼤ 9 KGの埋め込み • 質問qに関連する関係トリプルを選択し,回答
実験 2024/9/30 ACL2024読み会@名⼤ 10 Multihop QA スコアはaccuracy(完全⼀致) • 5つのデータセットで評価 •
SoTA性能 • ベースラインモデル • 抽出型Reader • DPR • ⽣成型Reader • RAG-Seq, FiDO • KG強化型Reader • KG-FiD, OREOLM, GRAPE
Passagesを減らした時の影響 2024/9/30 ACL2024読み会@名⼤ 11 • nを減らしていくとnnとn50のスコアの差が開いていく • 50 passages由来の関係トリプルが有⽤な情報を提供 •
T5に⼊⼒するPassagesの減少が可能 NQ TQA n50 nn
Case Study 2024/9/30 ACL2024読み会@名⼤ 12 • 既存の知識にない関係トリプルを活⽤できている
まとめ • 既存の知識にない情報を獲得し,Passage間の依存を捉える 検索拡張Readerモデル(REANO)を提案 • Passagesから抽出した情報でKnowledge Graph (KG)を補完 • ベースラインよりも⾼い性能を発揮
• 様々な結果の解析 2024/9/30 ACL2024読み会@名⼤ 13
補⾜:KG Generator 2024/9/30 ACL2024読み会@名⼤ 14 パッセージのentityペアの埋め込み トリプルの関係の埋め込み entityの埋め込み 近傍ノードを考慮した埋め込み qに対するアテンション
• 質問に関連する関係トリプルの埋め込みを獲得 • REM (Relation Embedding Module): REのノイズを緩和 • GNN (Graph Neural Network): 質問qに関連するentityの埋め込み獲得
補⾜:学習の⼯夫 • KG generator (DocuNet)の学習 • REBELデータセットで遠距離教師あり学習 • Answer Predictor
(GNNとT5) の学習 • cq :全entityについて質問に関連する確率の分布 • cq *: 質問から答えのentityまでのパスにあるentityは関連する 2024/9/30 ACL2024読み会@名⼤ 15
補⾜:Ablation Study • w/o inter-context triples • Passage間の関係なし • w/o
intra-context triples • DocuNetなし • w/o REM • REのノイズを緩和しない • w/o GNN • マルチホップが⾒られない 2024/9/30 ACL2024読み会@名⼤ 16 • GNNの下り幅が⼤きい