Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ACL読み会2024@名大 REANO: Optimising Retrieval-Augme...
Search
Takuma Matsubara
September 29, 2024
Science
0
210
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
Takuma Matsubara
September 29, 2024
Tweet
Share
Other Decks in Science
See All in Science
Symfony Console Facelift
chalasr
2
460
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
290
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
430
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
160
オンプレミス環境にKubernetesを構築する
koukimiura
0
300
データマイニング - ウェブとグラフ
trycycle
PRO
0
140
機械学習 - DBSCAN
trycycle
PRO
0
940
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
270
研究って何だっけ / What is Research?
ks91
PRO
1
110
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
450
2025-06-11-ai_belgium
sofievl
1
140
CV_3_Keypoints
hachama
0
190
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Thoughts on Productivity
jonyablonski
69
4.8k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
How to Ace a Technical Interview
jacobian
278
23k
Agile that works and the tools we love
rasmusluckow
329
21k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GitHub's CSS Performance
jonrohan
1031
460k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Balancing Empowerment & Direction
lara
1
510
Six Lessons from altMBA
skipperchong
28
3.9k
How GitHub (no longer) Works
holman
314
140k
Transcript
REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation Jinyuan
Fang, Zaiqiao Meng, Craig Macdonald University of Glasgow 読み⼿: 松原拓磨(豊⽥⼯⼤) 図表は論⽂,[1]より [1] Izacard et al., 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL.
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 2 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages
導⼊ • Open Domain Question Answering (ODQA) • ⼊⼒は質問,出⼒は回答 •
近年,Retrieval-Augmented Generation(RAG)が⾼い性能を発揮 ACL2024読み会@名⼤ 3 2024/9/30 Retrieval 外部知識 質問 Reader 回答 Passages Readerモデルに注⽬
問題提起と提案の概要 • 従来のReaderモデルではPassage間の依存を無視 ØPassegesからKGを構築することで,マルチホップな推論が可能 2024/9/30 ACL2024読み会@名⼤ 4 Fusion-in-Decoder (FiD) PassagesからKGを補完
情報が⾜りない
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 5
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 6
提案⼿法 Passageから補完したKGを活⽤したReaderモデルを提案 • KG Generator : 既存の知識にない情報を補完したKGを作成 • Answer Predictor
: 質問に関連するトリプルを選択し,回答 2024/9/30 ACL2024読み会@名⼤ 7
KG Generator 2024/9/30 ACL2024読み会@名⼤ 8 • 既存の知識にない情報を補完したKGを作成 • Intra-context RE(⽂脈内関係抽出)
• 関係抽出モデルDocuNetによりPassagesから関係トリプルを獲得 • Inter-context RE(⽂脈間関係抽出) • Wikidataから関係トリプルを獲得 • Graph Neural Network (GNN) • Entityの埋め込みを獲得
Answer Predictor 2024/9/30 ACL2024読み会@名⼤ 9 KGの埋め込み • 質問qに関連する関係トリプルを選択し,回答
実験 2024/9/30 ACL2024読み会@名⼤ 10 Multihop QA スコアはaccuracy(完全⼀致) • 5つのデータセットで評価 •
SoTA性能 • ベースラインモデル • 抽出型Reader • DPR • ⽣成型Reader • RAG-Seq, FiDO • KG強化型Reader • KG-FiD, OREOLM, GRAPE
Passagesを減らした時の影響 2024/9/30 ACL2024読み会@名⼤ 11 • nを減らしていくとnnとn50のスコアの差が開いていく • 50 passages由来の関係トリプルが有⽤な情報を提供 •
T5に⼊⼒するPassagesの減少が可能 NQ TQA n50 nn
Case Study 2024/9/30 ACL2024読み会@名⼤ 12 • 既存の知識にない関係トリプルを活⽤できている
まとめ • 既存の知識にない情報を獲得し,Passage間の依存を捉える 検索拡張Readerモデル(REANO)を提案 • Passagesから抽出した情報でKnowledge Graph (KG)を補完 • ベースラインよりも⾼い性能を発揮
• 様々な結果の解析 2024/9/30 ACL2024読み会@名⼤ 13
補⾜:KG Generator 2024/9/30 ACL2024読み会@名⼤ 14 パッセージのentityペアの埋め込み トリプルの関係の埋め込み entityの埋め込み 近傍ノードを考慮した埋め込み qに対するアテンション
• 質問に関連する関係トリプルの埋め込みを獲得 • REM (Relation Embedding Module): REのノイズを緩和 • GNN (Graph Neural Network): 質問qに関連するentityの埋め込み獲得
補⾜:学習の⼯夫 • KG generator (DocuNet)の学習 • REBELデータセットで遠距離教師あり学習 • Answer Predictor
(GNNとT5) の学習 • cq :全entityについて質問に関連する確率の分布 • cq *: 質問から答えのentityまでのパスにあるentityは関連する 2024/9/30 ACL2024読み会@名⼤ 15
補⾜:Ablation Study • w/o inter-context triples • Passage間の関係なし • w/o
intra-context triples • DocuNetなし • w/o REM • REのノイズを緩和しない • w/o GNN • マルチホップが⾒られない 2024/9/30 ACL2024読み会@名⼤ 16 • GNNの下り幅が⼤きい