Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最先端NLP2020: Dice Loss for Data-imbalanced NLP ...
Search
tatHi
September 25, 2020
Research
0
1.9k
最先端NLP2020: Dice Loss for Data-imbalanced NLP Tasks
Japanese presentation introducing "Dice Loss for Data-imbalanced NLP Tasks".
tatHi
September 25, 2020
Tweet
Share
More Decks by tatHi
See All by tatHi
SNLP2023: From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
tathi
0
480
最長一致法のためのサブワード正則化手法(MaxMatch-Dropout)とその周辺の話
tathi
1
680
最先端NLP2022: Rare Tokens Degenerate All Tokens: Improving Neural Text Generation via Adaptive Gradient Gating for Rare Token Embeddings
tathi
1
660
テキストベクトルの重み付けを用いたタスクに対する単語分割の最適化
tathi
1
940
要点を聞いてもらえるプレゼンを作ろう
tathi
14
6.8k
Task-Oriented Word Segmentation (Presentation for Doctoral Dissertation)
tathi
3
640
論文紹介: Fast WordPiece Tokenization
tathi
0
570
最先端NLP2021: How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models
tathi
0
680
文系的な興味を理系的な達成目標に変換する
tathi
7
4.7k
Other Decks in Research
See All in Research
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
910
20250725-bet-ai-day
cipepser
3
520
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.1k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
260
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
250
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
500
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
730
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
430
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
920
単施設でできる臨床研究の考え方
shuntaros
0
3.2k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
410
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
410
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
How to Ace a Technical Interview
jacobian
280
24k
Balancing Empowerment & Direction
lara
5
740
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The Invisible Side of Design
smashingmag
302
51k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Designing for humans not robots
tammielis
254
26k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Building Adaptive Systems
keathley
44
2.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Transcript
Dice Loss for Data-imbalanced NLP Tasks Xiaoya Li, Xiaofei Sun,
Yuxian Meng, Junjun Liang, Fei Wu, Jiwei Li (ACL2020) Presenter: 平岡達也(東⼯⼤岡崎研D2) 2020/9/21 最先端NLP2020 1
まとめると • 問題: • (1) NLPタスクにおけるラベルの偏りがもたらす性能低下 • (2) easy-exampleに偏った学習を⾏うことによる性能低下 •
→これらは⼀般的に使⽤されるCross Entropy Lossでは考慮できない • 解決⽅策: • (1) Dice係数に基づくロス(Dice Loss)を導⼊し, ラベルの偏りを考慮した学習を⾏う. • (2) Focal Lossを応⽤することで, easy-exampleに学習が偏らない損失関数へとDice Lossを拡張 • 結果: • 複数のタスクで性能向上に寄与 • POS, NER, Reading comprehension, Paraphrase identification 2020/9/21 最先端NLP2020 2
NLPタスクにおける偏ったラベル⽐ • POS • ほとんどがNOUN • NER • ほとんどがOタグ •
Sentiment • ほとんどがpositive 2020/9/21 最先端NLP2020 3
偏ったラベル⽐が引き起こす⼆つの問題 1. 学習と評価の乖離 • 学習時は各サンプルをCross Entropy Lossで学習するため,サンプル 数の多いラベルに予測が傾く. • 評価ではF1値を⽤いるため,偏った予測に対するペナルティがある.
2. Easy negative exampleを重点的に学習 • 特定のラベルに偏ったデータではeasy-exampleが多くなる • 偏ったラベルの中の特に簡単なサンプルを重点的に学習してしまう 2020/9/21 最先端NLP2020 4
偏ったラベル⽐が引き起こす⼆つの問題 1. 学習と評価の乖離 • 学習時は各サンプルをCross Entropy Lossで学習するため,サンプル 数の多いラベルに予測が傾く. • 評価ではF1値を⽤いるため,偏った予測に対するペナルティがある.
• →(1) F1 scoreに関係する損失(Dice loss)で学習する 2. Easy negative exampleを重点的に学習 • 特定のラベルに偏ったデータではeasy-exampleが多くなる • 偏ったラベルの中の特に簡単なサンプルを重点的に学習してしまう • →(2) ⾃信を持って正解できる事例の損失に重みをつける (Focal lossに由来) 2020/9/21 最先端NLP2020 5
(1) Dice Loss [1/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Similarity Coefficient (DSC) • ※⼆値分類の場合 A: モデルが正と予測した 事例の集合 B: 実際の正例の集合 と考えると 2020/9/21 最先端NLP2020 6
(1) Dice Loss [2/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Similarity Coefficient (DSC) • ※⼆値分類の場合 A: モデルが正と予測した 事例の集合 B: 実際の正例の集合 と考えると A B AとBが完全に重なるときに (, )が最⼤ →負例に偏った予測をしていると ペナルティがある 2020/9/21 最先端NLP2020 7
(1) Dice Loss [3/3] • ⽬的:学習損失と評価に⽤いるF1 scoreのギャップを埋める • ⽅法:F1 scoreに基づいた損失を設計
• Dice Loss (DL) 事例! が正例ラベル1である予測確率 事例! が正例である時に1,その他で0 ⼀つの事例! についてのDSC データ全体でのDice Loss (! )をデータ全体で計算. !" # , !" # は学習が早くなるテクニック 2020/9/21 最先端NLP2020 8
(2) Self-adjusting Dice Loss [1/2] • 問題:easy-exampleに学習が偏る • 現象: •
⼆値分類の場合,正負のラベルを予測するためにはラベルの予測確率 が0.5より少しでも⼤きいか・⼩さければ良い. • Easy-example(例えばeasy-negative)が多い場合,予測確率が0に なるようにどんどん学習されてしまう • 例えば正例確率が0.1で⼗分に分類できているにもかかわらず,0.0に確率を近 づけるような損失が働く • →0.5付近の予測が0側に引っ張られてしまい,識別が難しくなる • (hard-negative, positiveの分類が難しくなる) • Easy-exampleはラベルが⼤きく偏っている場合に発⽣する 2020/9/21 最先端NLP2020 9
(2) Self-adjusting Dice Loss [2/2] • ⽬的:easy-exampleに学習が偏ることを防ぐ • ⽅法:モデルの予測確率でロスに重みをつけ, ⾃信を持って予測できる事例の損失を下げる
• 正例に対して,最低限の !" = 0.5を予測できるようする 2020/9/21 最先端NLP2020 10 DL DSC
Experiments (POS) • 中国語のPOSタグ付データセット • 他にもNER・読解・分類タスクで性能向上を確認 2020/9/25 最先端NLP2020 11
vs. Data augmentation • Paraphrase identification dataset QQP (⼆値分類) •
データ拡張・縮⼩を⾏ったデータセットで実験 • ラベルが均等になるようなデータ拡張を⾏わなくとも, DSCだけでそこそこの性能向上が得られる 訓練事例数 363,871 458,477 458,477 269,165 458,477(?) pos/neg⽐ 37% 63% 50% 50% 21% 79% 50% 50% 50% 50% 2020/9/21 最先端NLP2020 12
まとめ • ラベルが偏ったデータを学習するためにDiceLossを提案 • 評価で使⽤されるF1 scoreと同様の⽬的関数によりギャップを無くす • Focal Lossを応⽤し,easy-exampleの影響を減らす •
POSタグ付,NERなどの多値分類タスクで性能向上 • Data Augmentationせずとも,ラベルの偏りの影響を軽減した 学習が可能 • Generationタスクに応⽤できるか? • ラベル数(語彙)が⼤きすぎて難しい? 2020/9/21 最先端NLP2020 13