Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計学入門講座 第7回スライド
Search
TechmathProject
August 11, 2025
Science
0
21
統計学入門講座 第7回スライド
てくますプロジェクトで行った統計学入門講座の第7回スライドです。
実施:2025/01/27
TechmathProject
August 11, 2025
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第5回スライド
techmathproject
0
39
統計学入門講座 第6回スライド
techmathproject
0
29
統計学入門講座 第8回スライド
techmathproject
0
23
統計学入門講座 第4回スライド
techmathproject
0
260
統計学入門講座 第3回スライド
techmathproject
0
160
統計学入門講座 第2回スライド
techmathproject
0
260
統計学入門講座 第1回スライド
techmathproject
0
570
線形代数学入門講座 第1回スライド
techmathproject
0
160
線形代数学入門講座 第2回スライド
techmathproject
0
97
Other Decks in Science
See All in Science
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
データマイニング - ノードの中心性
trycycle
PRO
0
320
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
Distributional Regression
tackyas
0
240
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
320
HDC tutorial
michielstock
0
270
2025-06-11-ai_belgium
sofievl
1
210
My Little Monster
juzishuu
0
340
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
590
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
220
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
4 Signs Your Business is Dying
shpigford
186
22k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
260
Building Adaptive Systems
keathley
44
2.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Curious Case for Waylosing
cassininazir
0
190
My Coaching Mixtape
mlcsv
0
13
Making Projects Easy
brettharned
120
6.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Transcript
統計学入門講座 第7回 母分散, 母比率の検定 てくますプロジェクト
てくますプロジェクトについて • てくますプロジェクトは, 「考える楽しさを探そう!」が合言葉の, 数学と情報科学の学習コミュニティです. • 数学や情報科学は, 誰にとっても役立ち, 趣味としても楽しめるものです. その魅力を伝えるために,
私たちは活動しています. • 輪読会や講座の実施, 記事などのコンテンツ制作を行っています. • X などで宣伝いただけると大変嬉しいです. (#てくますプロジェクト) • 講師はゆっきん(桑原)が担当します. ◦ 数学教師→システムエンジニア→プログラミング講師 ◦ 数学, プログラミング, ボードゲームが好きです. ◦ てくますプロジェクトやボードゲームコミュニティの運営を 行っています.
本講座について • 本講座は統計学を初めて学ぶ方や, 学び直したい方を対象としています. 本講座の前半は高校数学レベル, 後半は大学教養レベルです. 統計検定2級を目指す方にも適した内容です. • 本講座は各回, 前半で知識のインプット,
後半で問題演習を行います. • 高校や大学以外で数学を学ぶことのできる貴重な場です. 数学を学びたい人たちが集まっていますので, ぜひ交流してください! • 本講座作成にあたり, 特に参考にした本を 右に挙げておきます. 2冊ともオススメです. • 後ろから顔が映らないように写真を撮ることがあります. ご了承ください.
スケジュール 第1回 データの整理 2024/10/07 第4回 確率分布 2024/12/02 第3回 確率の基本 2024/11/18
第2回 データの散らばり 2024/10/28 第5回 検定の枠組み 2024/12/16 第8回 2標本t検定 2025/02/10 第6回 母平均の検定 2025/01/06 第7回 母分散, 母比率の検定 2025/01/27 本講座は全8回です. 各回の内容は以下の通りです.
目次 1. 母比率の検定 母比率を検定する方法を学びます. ベースはこれまでに学んできた検定と同様です. 2. 母分散の検定 分布を導入し, 母分散を検定する方法を学びます.
母比率の検定
投票に行く予定の人数 は二項分布に従います.(平均値は , 分散は ) 試行回数 が大きい場合には, 二項分布は正規分布で近似できます. よって, 標本比率 の分布は
• 平均値: • 分散: の正規分布として考えることができます. ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 の95%信頼区間を求めなさい. 母比率の区間推定 今回の問題の場合 • 試行回数 • 母比率 ←調べたい • 標本比率
を標準化します. ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 の95%信頼区間を求めなさい. 母比率の区間推定 試行回数 が大きい場合には, 分母の を
にしても問題ないことが知られています. よって, ゆえに, 母比率 の95%信頼区間は となります. 今回の問題の場合 • 試行回数 • 母比率 ←調べたい • 標本比率
ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 が0.5であるか検定しましょう. 有意水準は 5%(両側検定)とします. 母比率の検定 0.5 は母比率 の95%信頼区間
に入っていません. よって, 母比率 が0.5である仮説は棄却されます. ※母比率の検定は, 第1回でガイダンスとして行った「表が出やすいコインか」の検定(二項検定)と 似ていますね. 二項分布を使って検定するか, 正規分布近似で検定するかの違いです. 標本サイズが大きい今回のような場合は, 正規分布を使った方が簡単に計算できます.
母分散の検定
分布とは 標準正規分布(平均値0, 標準偏差1の正規分布)からデータをn個観測したとします. これらのデータをそれぞれ2乗して足し合わせた値 は, 自由度 n の 分布
に従います. この 分布を用いて, 母分散の検定を行います. 自由度 分布は正規分布や t 分布と異なり, 左右非対称です. 左側と右側に2.5%ずつ棄却域を設ける場合は, 0.975と0.025の列の値を使いましょう.
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集した. 得られたデータは以下の通りです. 55, 62, 59, 60, 64 母平均 は未知とし,
母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう. 母分散の区間推定 はいずれも標準正規分布上のデータと考えられます. よって, は自由度 5 の 分布に従います. しかし, 母平均 が未知であることから, この方法では, 母分散 の信頼区間を求めることができません. そのため, 母平均 を標本平均 で代用することを考えます. は自由度 5 - 1 = 4 の 分布に従います!
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集した. 得られたデータは以下の通りです. 55, 62, 59, 60, 64 母平均 は未知とし,
母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう. 母分散の区間推定 が自由度 4 の 分布に従うので, ゆえに, 母分散 の95%信頼区間は となります.
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集したところ, 標本分散は 11.5 でした. 母平均 は未知とし, 母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう.
母分散の区間推定 なお, 個々のデータの値が分かっていなくても, 標本分散が分かっていれば, 母分散は推定できます. の式は, 分母の を に書き換えると, 標本分散 を求める式になります. つまり, 一般的に以下の式が成り立ちます. 整理をして, この式を使うことで, となります. 以降は先ほどと同様です.
まとめ • 母比率の区間推定: が標準正規分布に従うことを利用しましょう. • 母分散の区間推定 ◦ 母平均が既知の場合 が自由度 n
の 分布に従うことを利用しましょう ◦ 母平均が未知の場合 が自由度 n-1 の 分布 に従うことを利用しましょう.
演習問題を解こう!