Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計学入門講座 第7回スライド
Search
TechmathProject
August 11, 2025
Science
0
9
統計学入門講座 第7回スライド
てくますプロジェクトで行った統計学入門講座の第7回スライドです。
実施:2025/01/27
TechmathProject
August 11, 2025
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第5回スライド
techmathproject
0
24
統計学入門講座 第6回スライド
techmathproject
0
8
統計学入門講座 第8回スライド
techmathproject
0
7
統計学入門講座 第4回スライド
techmathproject
0
180
統計学入門講座 第3回スライド
techmathproject
0
120
統計学入門講座 第2回スライド
techmathproject
0
180
統計学入門講座 第1回スライド
techmathproject
0
440
線形代数学入門講座 第1回スライド
techmathproject
0
110
線形代数学入門講座 第2回スライド
techmathproject
0
76
Other Decks in Science
See All in Science
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
320
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
390
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
110
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
340
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
130
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.2k
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
990
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
310
Lean4による汎化誤差評価の形式化
milano0017
1
300
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
560
Machine Learning for Materials (Challenge)
aronwalsh
0
320
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Making Projects Easy
brettharned
117
6.4k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
The World Runs on Bad Software
bkeepers
PRO
70
11k
GraphQLとの向き合い方2022年版
quramy
49
14k
It's Worth the Effort
3n
187
28k
Transcript
統計学入門講座 第7回 母分散, 母比率の検定 てくますプロジェクト
てくますプロジェクトについて • てくますプロジェクトは, 「考える楽しさを探そう!」が合言葉の, 数学と情報科学の学習コミュニティです. • 数学や情報科学は, 誰にとっても役立ち, 趣味としても楽しめるものです. その魅力を伝えるために,
私たちは活動しています. • 輪読会や講座の実施, 記事などのコンテンツ制作を行っています. • X などで宣伝いただけると大変嬉しいです. (#てくますプロジェクト) • 講師はゆっきん(桑原)が担当します. ◦ 数学教師→システムエンジニア→プログラミング講師 ◦ 数学, プログラミング, ボードゲームが好きです. ◦ てくますプロジェクトやボードゲームコミュニティの運営を 行っています.
本講座について • 本講座は統計学を初めて学ぶ方や, 学び直したい方を対象としています. 本講座の前半は高校数学レベル, 後半は大学教養レベルです. 統計検定2級を目指す方にも適した内容です. • 本講座は各回, 前半で知識のインプット,
後半で問題演習を行います. • 高校や大学以外で数学を学ぶことのできる貴重な場です. 数学を学びたい人たちが集まっていますので, ぜひ交流してください! • 本講座作成にあたり, 特に参考にした本を 右に挙げておきます. 2冊ともオススメです. • 後ろから顔が映らないように写真を撮ることがあります. ご了承ください.
スケジュール 第1回 データの整理 2024/10/07 第4回 確率分布 2024/12/02 第3回 確率の基本 2024/11/18
第2回 データの散らばり 2024/10/28 第5回 検定の枠組み 2024/12/16 第8回 2標本t検定 2025/02/10 第6回 母平均の検定 2025/01/06 第7回 母分散, 母比率の検定 2025/01/27 本講座は全8回です. 各回の内容は以下の通りです.
目次 1. 母比率の検定 母比率を検定する方法を学びます. ベースはこれまでに学んできた検定と同様です. 2. 母分散の検定 分布を導入し, 母分散を検定する方法を学びます.
母比率の検定
投票に行く予定の人数 は二項分布に従います.(平均値は , 分散は ) 試行回数 が大きい場合には, 二項分布は正規分布で近似できます. よって, 標本比率 の分布は
• 平均値: • 分散: の正規分布として考えることができます. ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 の95%信頼区間を求めなさい. 母比率の区間推定 今回の問題の場合 • 試行回数 • 母比率 ←調べたい • 標本比率
を標準化します. ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 の95%信頼区間を求めなさい. 母比率の区間推定 試行回数 が大きい場合には, 分母の を
にしても問題ないことが知られています. よって, ゆえに, 母比率 の95%信頼区間は となります. 今回の問題の場合 • 試行回数 • 母比率 ←調べたい • 標本比率
ある地域の住民1000人を対象に投票の意向を調査しました. その結果, 600人が「次回の選挙で投票に行く予定がある」と回答しました. 母比率 が0.5であるか検定しましょう. 有意水準は 5%(両側検定)とします. 母比率の検定 0.5 は母比率 の95%信頼区間
に入っていません. よって, 母比率 が0.5である仮説は棄却されます. ※母比率の検定は, 第1回でガイダンスとして行った「表が出やすいコインか」の検定(二項検定)と 似ていますね. 二項分布を使って検定するか, 正規分布近似で検定するかの違いです. 標本サイズが大きい今回のような場合は, 正規分布を使った方が簡単に計算できます.
母分散の検定
分布とは 標準正規分布(平均値0, 標準偏差1の正規分布)からデータをn個観測したとします. これらのデータをそれぞれ2乗して足し合わせた値 は, 自由度 n の 分布
に従います. この 分布を用いて, 母分散の検定を行います. 自由度 分布は正規分布や t 分布と異なり, 左右非対称です. 左側と右側に2.5%ずつ棄却域を設ける場合は, 0.975と0.025の列の値を使いましょう.
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集した. 得られたデータは以下の通りです. 55, 62, 59, 60, 64 母平均 は未知とし,
母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう. 母分散の区間推定 はいずれも標準正規分布上のデータと考えられます. よって, は自由度 5 の 分布に従います. しかし, 母平均 が未知であることから, この方法では, 母分散 の信頼区間を求めることができません. そのため, 母平均 を標本平均 で代用することを考えます. は自由度 5 - 1 = 4 の 分布に従います!
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集した. 得られたデータは以下の通りです. 55, 62, 59, 60, 64 母平均 は未知とし,
母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう. 母分散の区間推定 が自由度 4 の 分布に従うので, ゆえに, 母分散 の95%信頼区間は となります.
ある生物学の実験で, 5匹の実験動物の体重を無作為に収集したところ, 標本分散は 11.5 でした. 母平均 は未知とし, 母集団は正規分布に従うと仮定します. 母分散 の95%信頼区間を求めましょう.
母分散の区間推定 なお, 個々のデータの値が分かっていなくても, 標本分散が分かっていれば, 母分散は推定できます. の式は, 分母の を に書き換えると, 標本分散 を求める式になります. つまり, 一般的に以下の式が成り立ちます. 整理をして, この式を使うことで, となります. 以降は先ほどと同様です.
まとめ • 母比率の区間推定: が標準正規分布に従うことを利用しましょう. • 母分散の区間推定 ◦ 母平均が既知の場合 が自由度 n
の 分布に従うことを利用しましょう ◦ 母平均が未知の場合 が自由度 n-1 の 分布 に従うことを利用しましょう.
演習問題を解こう!