Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
270
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
590
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
400
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
210
Jupyter Notebookを納品した話
tereka114
0
470
Multi Scale Recognition with DAG-CNNs
tereka114
0
150
How to use scikit-image for data augmentation
tereka114
0
270
Other Decks in Programming
See All in Programming
RailsGirls IZUMO スポンサーLT
16bitidol
0
140
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
120
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
260
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
220
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
720
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
520
dbt民主化とLLMによる開発ブースト ~ AI Readyな分析サイクルを目指して ~
yoshyum
3
300
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
260
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
3
730
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
4
1k
Discover Metal 4
rei315
2
110
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
890
Featured
See All Featured
How to Ace a Technical Interview
jacobian
277
23k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Bash Introduction
62gerente
614
210k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
17
950
A better future with KSS
kneath
239
17k
A designer walks into a library…
pauljervisheath
207
24k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Testing 201, or: Great Expectations
jmmastey
42
7.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!