Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
250
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.4k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.5k
KDD2023学会参加報告
tereka114
2
550
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
360
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
180
Jupyter Notebookを納品した話
tereka114
0
400
Multi Scale Recognition with DAG-CNNs
tereka114
0
120
How to use scikit-image for data augmentation
tereka114
0
220
Other Decks in Programming
See All in Programming
Grafana Cloudとソラカメ
devoc
0
170
dbt Pythonモデルで実現するSnowflake活用術
trsnium
0
120
Amazon Bedrock Multi Agentsを試してきた
tm2
1
280
ファインディの テックブログ爆誕までの軌跡
starfish719
2
1.1k
Honoとフロントエンドの 型安全性について
yodaka
7
1.2k
JavaScriptツール群「UnJS」を5分で一気に駆け巡る!
k1tikurisu
9
1.8k
密集、ドキュメントのコロケーション with AWS Lambda
satoshi256kbyte
0
190
技術を根付かせる / How to make technology take root
kubode
1
250
動作確認やテストで漏れがちな観点3選
starfish719
6
1k
2,500万ユーザーを支えるSREチームの6年間のスクラムのカイゼン
honmarkhunt
6
5.3k
pylint custom ruleで始めるレビュー自動化
shogoujiie
0
120
sappoRo.R #12 初心者セッション
kosugitti
0
250
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
35
1.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Optimizing for Happiness
mojombo
376
70k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
Code Review Best Practice
trishagee
67
18k
Docker and Python
trallard
44
3.3k
BBQ
matthewcrist
87
9.5k
Automating Front-end Workflow
addyosmani
1368
200k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!