Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
260
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
570
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
380
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
200
Jupyter Notebookを納品した話
tereka114
0
440
Multi Scale Recognition with DAG-CNNs
tereka114
0
130
How to use scikit-image for data augmentation
tereka114
0
250
Other Decks in Programming
See All in Programming
Making TCPSocket.new "Happy"!
coe401_
1
1.6k
Lambda(Python)の リファクタリングが好きなんです
komakichi
3
210
サービスクラスのありがたみを発見したときの思い出 #phpcon_odawara
77web
4
680
The Evolution of the CRuby Build System
kateinoigakukun
0
720
小田原でみんなで一句詠みたいな #phpcon_odawara
stefafafan
0
340
Golangci-lint v2爆誕: 君たちはどうすべきか
logica0419
1
130
PHP で学ぶ OAuth 入門
azuki
1
210
Dissecting and Reconstructing Ruby Syntactic Structures
ydah
1
750
Rollupのビルド時間高速化によるプレビュー表示速度改善とバンドラとASTを駆使したプロダクト開発の難しさ
plaidtech
PRO
1
180
The Nature of Complexity in John Ousterhout’s Philosophy of Software Design
philipschwarz
PRO
0
120
Compose Hot Reload is here, stop re-launching your apps! (Android Makers 2025)
zsmb
1
520
Empowering Developers with HTML-Aware ERB Tooling @ RubyKaigi 2025, Matsuyama, Ehime
marcoroth
2
740
Featured
See All Featured
For a Future-Friendly Web
brad_frost
176
9.7k
A Tale of Four Properties
chriscoyier
158
23k
Producing Creativity
orderedlist
PRO
344
40k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
A better future with KSS
kneath
239
17k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
We Have a Design System, Now What?
morganepeng
52
7.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!