Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
240
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.3k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.5k
KDD2023学会参加報告
tereka114
2
540
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
360
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
180
Jupyter Notebookを納品した話
tereka114
0
380
Multi Scale Recognition with DAG-CNNs
tereka114
0
120
How to use scikit-image for data augmentation
tereka114
0
210
Other Decks in Programming
See All in Programming
Beyond ORM
77web
11
1.6k
Swiftコンパイラ超入門+async関数の仕組み
shiz
0
170
見えないメモリを観測する: PHP 8.4 `pg_result_memory_size()` とSQL結果のメモリ管理
kentaroutakeda
0
940
Асинхронность неизбежна: как мы проектировали сервис уведомлений
lamodatech
0
1.3k
ESLintプラグインを使用してCDKのセオリーを適用する
yamanashi_ren01
2
240
週次リリースを実現するための グローバルアプリ開発
tera_ny
1
1.2k
ErdMap: Thinking about a map for Rails applications
makicamel
1
660
ecspresso, ecschedule, lambroll を PipeCDプラグインとして動かしてみた (プロトタイプ) / Running ecspresso, ecschedule, and lambroll as PipeCD Plugins (prototype)
tkikuc
2
1.9k
.NETでOBS Studio操作してみたけど…… / Operating OBS Studio by .NET
skasweb
0
120
React 19でお手軽にCSS-in-JSを自作する
yukukotani
5
570
オニオンアーキテクチャを使って、 Unityと.NETでコードを共有する
soi013
0
370
DevinとCursorから学ぶAIエージェントメモリーの設計とMoatの考え方
itarutomy
0
150
Featured
See All Featured
The Language of Interfaces
destraynor
155
24k
The Cult of Friendly URLs
andyhume
78
6.1k
Speed Design
sergeychernyshev
25
740
GitHub's CSS Performance
jonrohan
1030
460k
Docker and Python
trallard
43
3.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Designing for humans not robots
tammielis
250
25k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Optimizing for Happiness
mojombo
376
70k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!