Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高スループット・低レイテンシを実現する技術
Search
tokku5552
September 01, 2023
Technology
3
12k
高スループット・低レイテンシを実現する技術
https://cyberagent.connpass.com/event/291186/
tokku5552
September 01, 2023
Tweet
Share
More Decks by tokku5552
See All by tokku5552
他責思考で考える、EMとICの本音
tokku5552
1
110
Google CloudとAWSのコンテナ実行環境比較
tokku5552
0
190
AWS CDKのススメ
tokku5552
1
490
Messaging APIのメッセージオブジェクトを検証できるChrome拡張機能を作った話
tokku5552
1
130
FlutterにLINEログインを仕込んで通知メッセージを送る
tokku5552
2
950
AWS CDK × Reactでliffをつくる
tokku5552
1
540
Flutterで単体テストを行う方法とGitHub Actionsを使った自動化
tokku5552
1
94
ネットワーク基礎 - WEBページが表示されるまで
tokku5552
1
260
インフラエンジニアのお仕事(オンプレ)
tokku5552
0
140
Other Decks in Technology
See All in Technology
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
130
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全
opelab
9
2.2k
Model Mondays S2E02: Model Context Protocol
nitya
0
180
TerraformをSaaSで使うとAzureの運用がこんなに楽ちん!HCP Terraformって何?
mnakabayashi
0
300
“社内”だけで完結していた私が、AWS Community Builder になるまで
nagisa53
1
130
Prox Industries株式会社 会社紹介資料
proxindustries
0
190
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
1
390
活きてなかったデータを活かしてみた話 / Shirokane Kougyou vol 19
sansan_randd
1
410
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
140
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
130
CIでのgolangci-lintの実行を約90%削減した話
kazukihayase
0
340
登壇ネタの見つけ方 / How to find talk topics
pinkumohikan
3
240
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Six Lessons from altMBA
skipperchong
28
3.8k
Done Done
chrislema
184
16k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Writing Fast Ruby
sferik
628
61k
Optimizing for Happiness
mojombo
379
70k
Transcript
高スループット・低レイテンシを実現する技術 株式会社CyberAgent AI事業本部 徳田真之介
自己紹介 • 徳田真之介(@tokkuu) • 略歴 ◦ 2023/05 〜
▪ CyberAgent AI事業本部 ◦ 2021/10 - 2023/04 ▪ ミロゴス株式会社(Web系) ◦ 2017/04 - 2021/09 ▪ 日鉄日立システムエンジニアリング(SIer) • 好きな技術 ◦ TypeScript/Next.js/AWS/Golang/Terraform/Flutter • 趣味 ◦ バンド(ex. ggrks) ◦ 娘 ◦ ディズニーランド
RTBの仕組みをおさらい
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・ユーザー情報から候補となる広告を選定 ・ユーザーの属性に合わせて入札額を決定 ・入札額と広告内容をSSPへ応答
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・どのキャンペーンの広告が見られたかを計測 ・消化額++ ・予算に到達していたらストップ
アーキテクチャ概観
None
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
bid処理を高速化する
None
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得 多段キャッシュでread処理を高速化 出力は標準出力のみ
imp処理の高速化 • impではDynamoDBへの書き込みが発生する • DynamoDBにそのまま書き込んでもある程度耐えられるはずだが、bidレスポンスほどの即時性 は必要ないため、SQSを挟んで非同期化
最適化ロジック周り
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
最適化ロジック • どの広告をいくらで出すのかを決めるため に、配信実績をもとに定期的にパラメーターを 更新している • 配信実績はS3のログからSFnのworkflowでリ フレッシュをかけてSnowflakeに保存 •
DynamoDBへテーブルを分けてユーザー毎、 広告毎に一意にパラメーターが取得できる
まとめ • read処理はインメモリ→ memcached/redis → Aurora/DynamoDBと多段にキャッシュすることで 高速化 • writeが必要な処理はSQSを使って非同期化
• 複雑なロジックが必要な部分のうち、予め計算しておけるところは バッチ処理で計算