Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高スループット・低レイテンシを実現する技術
Search
tokku5552
September 01, 2023
Technology
3
7.8k
高スループット・低レイテンシを実現する技術
https://cyberagent.connpass.com/event/291186/
tokku5552
September 01, 2023
Tweet
Share
More Decks by tokku5552
See All by tokku5552
Google CloudとAWSのコンテナ実行環境比較
tokku5552
0
140
AWS CDKのススメ
tokku5552
1
450
Messaging APIのメッセージオブジェクトを検証できるChrome拡張機能を作った話
tokku5552
1
100
FlutterにLINEログインを仕込んで通知メッセージを送る
tokku5552
2
850
AWS CDK × Reactでliffをつくる
tokku5552
1
470
Flutterで単体テストを行う方法とGitHub Actionsを使った自動化
tokku5552
1
82
ネットワーク基礎 - WEBページが表示されるまで
tokku5552
1
230
インフラエンジニアのお仕事(オンプレ)
tokku5552
0
110
hooks riverpod + state notifier + freezed でのドメイン駆動設計
tokku5552
0
330
Other Decks in Technology
See All in Technology
【若手エンジニア応援LT会】AWSで繋がり、共に成長! ~コミュニティ活動と新人教育への挑戦~
kazushi_ohata
0
180
Commitment vs Harrisonism - Keynote for Scrum Niseko 2024
miholovesq
6
1.1k
AWSコンテナ本出版から3年経った今、もし改めて執筆し直すなら / If I revise our container book
iselegant
15
4k
ネット広告に未来はあるか?「3rd Party Cookie廃止とPrivacy Sandboxの効果検証の裏側」 / third-party-cookie-privacy
cyberagentdevelopers
PRO
1
130
Gradle: The Build System That Loves To Hate You
aurimas
2
150
ユーザーの購買行動モデリングとその分析 / dsc-purchase-analysis
cyberagentdevelopers
PRO
2
100
チームを主語にしてみる / Making "Team" the Subject
ar_tama
4
310
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
290k
【若手エンジニア応援LT会】AWS Security Hubの活用に苦労した話
kazushi_ohata
0
170
急成長中のWINTICKETにおける品質と開発スピードと向き合ったQA戦略と今後の展望 / winticket-autify
cyberagentdevelopers
PRO
1
160
フルカイテン株式会社 採用資料
fullkaiten
0
36k
サイバーエージェントにおける生成AIのリスキリング施策の取り組み / cyber-ai-reskilling
cyberagentdevelopers
PRO
2
200
Featured
See All Featured
What's new in Ruby 2.0
geeforr
342
31k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
[RailsConf 2023] Rails as a piece of cake
palkan
51
4.9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
290
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Building an army of robots
kneath
302
42k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
355
29k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
Why You Should Never Use an ORM
jnunemaker
PRO
53
9k
Faster Mobile Websites
deanohume
304
30k
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Transcript
高スループット・低レイテンシを実現する技術 株式会社CyberAgent AI事業本部 徳田真之介
自己紹介 • 徳田真之介(@tokkuu) • 略歴 ◦ 2023/05 〜
▪ CyberAgent AI事業本部 ◦ 2021/10 - 2023/04 ▪ ミロゴス株式会社(Web系) ◦ 2017/04 - 2021/09 ▪ 日鉄日立システムエンジニアリング(SIer) • 好きな技術 ◦ TypeScript/Next.js/AWS/Golang/Terraform/Flutter • 趣味 ◦ バンド(ex. ggrks) ◦ 娘 ◦ ディズニーランド
RTBの仕組みをおさらい
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・ユーザー情報から候補となる広告を選定 ・ユーザーの属性に合わせて入札額を決定 ・入札額と広告内容をSSPへ応答
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・どのキャンペーンの広告が見られたかを計測 ・消化額++ ・予算に到達していたらストップ
アーキテクチャ概観
None
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
bid処理を高速化する
None
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得 多段キャッシュでread処理を高速化 出力は標準出力のみ
imp処理の高速化 • impではDynamoDBへの書き込みが発生する • DynamoDBにそのまま書き込んでもある程度耐えられるはずだが、bidレスポンスほどの即時性 は必要ないため、SQSを挟んで非同期化
最適化ロジック周り
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
最適化ロジック • どの広告をいくらで出すのかを決めるため に、配信実績をもとに定期的にパラメーターを 更新している • 配信実績はS3のログからSFnのworkflowでリ フレッシュをかけてSnowflakeに保存 •
DynamoDBへテーブルを分けてユーザー毎、 広告毎に一意にパラメーターが取得できる
まとめ • read処理はインメモリ→ memcached/redis → Aurora/DynamoDBと多段にキャッシュすることで 高速化 • writeが必要な処理はSQSを使って非同期化
• 複雑なロジックが必要な部分のうち、予め計算しておけるところは バッチ処理で計算