Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
Search
toshitanian
January 27, 2017
Technology
0
1.2k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
January 27, 2017
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2k
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
1
520
nvidia-jetson-x-deep-learning
toshitanian
0
1.5k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
6.7k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
2.8k
Other Decks in Technology
See All in Technology
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
120
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
300
飲食店データの分析事例とそれを支えるデータ基盤
kimujun
0
160
生成AIが変えるデータ分析の全体像
ishikawa_satoru
0
170
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
760
FlutterアプリにおけるSLI/SLOを用いたユーザー体験の可視化と計測基盤構築
ostk0069
0
100
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.4k
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
160
Application Development WG Intro at AppDeveloperCon
salaboy
0
190
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.7k
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Ruby is Unlike a Banana
tanoku
97
11k
Faster Mobile Websites
deanohume
305
30k
Why Our Code Smells
bkeepers
PRO
334
57k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Optimizing for Happiness
mojombo
376
70k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
GitHub's CSS Performance
jonrohan
1030
460k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Transcript
ABEJA Innovation Meetup #ABEJAmeetup 2017/01/26 ABEJA, Inc. 河崎 敏弥
• MachineLearning/DeepLearningを使った動画解析エンジン • 実行する上で課題になる事 • ABEJAでのアプローチ 今日話す事 2
自己紹介
河崎 敏弥 @toshitanian ABEJA, Inc. IoT Analytics Division Product Owner
• 創業1年の時にABEJAに参画 • バックエンドエンジニア • クラウド上でシステム構築 • IoTデバイスとのシステム連携 • ここ2年はコンテナ推し
社名# 株式会社ABEJA# 設立# 2012年9月10日# 住所# 東京都港区虎ノ門4-1-20田中山ビル10F# 事業内容# ディープラーニングを活用した# 産業構造変革のサポート#
ABEJA Platform Ecosystem "
Unstructured Data Structured Data Analytics Engine Distributed Deep Learning Unstructured
Data ↓ Structured Data API ABEJA Platform
Video Analytics with Deep Learning
Video Analytics with Deeplearning 9 動画 解析結果
10 動画 解析結果
11
12 ? ? ? ? ? ? ? ? ?
? ? ?
困った… 13
• 大量の計算リソースの管理 • 大量のデータを処理 • スケール可能な解析インフラ • 効率の良い解析タスクの分散方法 • 利用リソースはアプリケーション依存.
CPU?GPU?占有コア数・メモリ量 • アプリケーション管理 • 解析アプリに必要な要件は? • 管理する解析アプリは増加の一途(研究開発によってできる事は増える) ML/DLの実行プラットフォームが考慮すべき事 14
ABEJAでのアプローチ
コンテナ
• Elasticな実行インフラ • 計算リソースが足りなければ勝手に増える • 解析タスクの分散はコンテナのスケジューラにお任せ • クラスタのどこかでコンテナが動いて解析が走っている状態 • CPUとかGPUとか毎の要件毎にリソースプールを作ってる
コンテナ - 実行インフラのスケーリング - 17 計算処理が増えても安心!
• 解析エンジンはDocker Imageとしてパッケージ化 • コンテナ内部の構成を定義 • コンテナへのファイル入力方法と、結果の出力方法を仕様として定義 • 仕様に合っている限りは基盤上で動く •
Docker registoryベースのアプリケーション管理 • アプリ毎のバージョン管理 • アプリ毎のリソース要件を付加 コンテナ - アプリケーション管理 - 18 アプリが増えても安心!
19 イケてるしヤバいエンジニア募集中 ABEJA Wantedly