Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
Search
toshitanian
January 27, 2017
Technology
0
1.3k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
January 27, 2017
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.2k
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
1
600
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
RAG/Agent開発のアップデートまとめ
taka0709
0
170
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
330
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
660
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
1
120
技術以外の世界に『越境』しエンジニアとして進化を遂げる 〜Kotlinへの愛とDevHRとしての挑戦を添えて〜
subroh0508
1
440
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
130
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
第4回 「メタデータ通り」 リアル開催
datayokocho
0
130
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
120
チーリンについて
hirotomotaguchi
6
1.9k
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Typedesign – Prime Four
hannesfritz
42
2.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Scaling GitHub
holman
464
140k
Faster Mobile Websites
deanohume
310
31k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Designing for Performance
lara
610
69k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
ABEJA Innovation Meetup #ABEJAmeetup 2017/01/26 ABEJA, Inc. 河崎 敏弥
• MachineLearning/DeepLearningを使った動画解析エンジン • 実行する上で課題になる事 • ABEJAでのアプローチ 今日話す事 2
自己紹介
河崎 敏弥 @toshitanian ABEJA, Inc. IoT Analytics Division Product Owner
• 創業1年の時にABEJAに参画 • バックエンドエンジニア • クラウド上でシステム構築 • IoTデバイスとのシステム連携 • ここ2年はコンテナ推し
社名# 株式会社ABEJA# 設立# 2012年9月10日# 住所# 東京都港区虎ノ門4-1-20田中山ビル10F# 事業内容# ディープラーニングを活用した# 産業構造変革のサポート#
ABEJA Platform Ecosystem "
Unstructured Data Structured Data Analytics Engine Distributed Deep Learning Unstructured
Data ↓ Structured Data API ABEJA Platform
Video Analytics with Deep Learning
Video Analytics with Deeplearning 9 動画 解析結果
10 動画 解析結果
11
12 ? ? ? ? ? ? ? ? ?
? ? ?
困った… 13
• 大量の計算リソースの管理 • 大量のデータを処理 • スケール可能な解析インフラ • 効率の良い解析タスクの分散方法 • 利用リソースはアプリケーション依存.
CPU?GPU?占有コア数・メモリ量 • アプリケーション管理 • 解析アプリに必要な要件は? • 管理する解析アプリは増加の一途(研究開発によってできる事は増える) ML/DLの実行プラットフォームが考慮すべき事 14
ABEJAでのアプローチ
コンテナ
• Elasticな実行インフラ • 計算リソースが足りなければ勝手に増える • 解析タスクの分散はコンテナのスケジューラにお任せ • クラスタのどこかでコンテナが動いて解析が走っている状態 • CPUとかGPUとか毎の要件毎にリソースプールを作ってる
コンテナ - 実行インフラのスケーリング - 17 計算処理が増えても安心!
• 解析エンジンはDocker Imageとしてパッケージ化 • コンテナ内部の構成を定義 • コンテナへのファイル入力方法と、結果の出力方法を仕様として定義 • 仕様に合っている限りは基盤上で動く •
Docker registoryベースのアプリケーション管理 • アプリ毎のバージョン管理 • アプリ毎のリソース要件を付加 コンテナ - アプリケーション管理 - 18 アプリが増えても安心!
19 イケてるしヤバいエンジニア募集中 ABEJA Wantedly