Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
Search
toshitanian
January 27, 2017
Technology
0
1.4k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
January 27, 2017
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2.3k
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
1
620
nvidia-jetson-x-deep-learning
toshitanian
0
1.6k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
7.1k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
3k
Other Decks in Technology
See All in Technology
Tebiki Engineering Team Deck
tebiki
0
24k
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
210
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.2k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
180
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
220
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
Webhook best practices for rock solid and resilient deployments
glaforge
1
280
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
180
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
350
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
150
Featured
See All Featured
A Soul's Torment
seathinner
5
2.2k
Visualization
eitanlees
150
17k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Docker and Python
trallard
47
3.7k
HDC tutorial
michielstock
1
370
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
For a Future-Friendly Web
brad_frost
182
10k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
64
Transcript
ABEJA Innovation Meetup #ABEJAmeetup 2017/01/26 ABEJA, Inc. 河崎 敏弥
• MachineLearning/DeepLearningを使った動画解析エンジン • 実行する上で課題になる事 • ABEJAでのアプローチ 今日話す事 2
自己紹介
河崎 敏弥 @toshitanian ABEJA, Inc. IoT Analytics Division Product Owner
• 創業1年の時にABEJAに参画 • バックエンドエンジニア • クラウド上でシステム構築 • IoTデバイスとのシステム連携 • ここ2年はコンテナ推し
社名# 株式会社ABEJA# 設立# 2012年9月10日# 住所# 東京都港区虎ノ門4-1-20田中山ビル10F# 事業内容# ディープラーニングを活用した# 産業構造変革のサポート#
ABEJA Platform Ecosystem "
Unstructured Data Structured Data Analytics Engine Distributed Deep Learning Unstructured
Data ↓ Structured Data API ABEJA Platform
Video Analytics with Deep Learning
Video Analytics with Deeplearning 9 動画 解析結果
10 動画 解析結果
11
12 ? ? ? ? ? ? ? ? ?
? ? ?
困った… 13
• 大量の計算リソースの管理 • 大量のデータを処理 • スケール可能な解析インフラ • 効率の良い解析タスクの分散方法 • 利用リソースはアプリケーション依存.
CPU?GPU?占有コア数・メモリ量 • アプリケーション管理 • 解析アプリに必要な要件は? • 管理する解析アプリは増加の一途(研究開発によってできる事は増える) ML/DLの実行プラットフォームが考慮すべき事 14
ABEJAでのアプローチ
コンテナ
• Elasticな実行インフラ • 計算リソースが足りなければ勝手に増える • 解析タスクの分散はコンテナのスケジューラにお任せ • クラスタのどこかでコンテナが動いて解析が走っている状態 • CPUとかGPUとか毎の要件毎にリソースプールを作ってる
コンテナ - 実行インフラのスケーリング - 17 計算処理が増えても安心!
• 解析エンジンはDocker Imageとしてパッケージ化 • コンテナ内部の構成を定義 • コンテナへのファイル入力方法と、結果の出力方法を仕様として定義 • 仕様に合っている限りは基盤上で動く •
Docker registoryベースのアプリケーション管理 • アプリ毎のバージョン管理 • アプリ毎のリソース要件を付加 コンテナ - アプリケーション管理 - 18 アプリが増えても安心!
19 イケてるしヤバいエンジニア募集中 ABEJA Wantedly