Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
Search
toshitanian
January 27, 2017
Technology
0
1.2k
急成長スタートアップのシステムの裏側 / ABEJA Innovation Meetup
toshitanian
January 27, 2017
Tweet
Share
More Decks by toshitanian
See All by toshitanian
エッジデバイスでディープラーニング! AWSを活用したエッジデバイスマネジメントの紹介/ aws-edge-device-deeplearning
toshitanian
1
2k
機械学習プラットフォーム でのDocker利用事例 / DevSumiAbeja
toshitanian
1
520
nvidia-jetson-x-deep-learning
toshitanian
0
1.5k
Amazon Kinesis Video Streams × Deep Learning
toshitanian
1
6.7k
Docker入門 - Ruby on RailsアプリケーションをDockerで動かしてみる - / Introduction to Docker
toshitanian
7
2.8k
Other Decks in Technology
See All in Technology
ユーザーの購買行動モデリングとその分析 / dsc-purchase-analysis
cyberagentdevelopers
PRO
2
100
[JAWS-UG金沢支部×コンテナ支部合同企画]コンテナとは何か
furuton
3
240
AIを駆使したゲーム開発戦略: 新設AI組織の取り組み / sge-ai-strategy
cyberagentdevelopers
PRO
1
130
Fargateを使った研修の話
takesection
0
110
よくわからんサービスについての問い合わせが来たときの強い味方 Amazon Q について
kazzpapa3
0
220
ガチ勢によるPipeCD運用大全〜滑らかなCI/CDを添えて〜 / ai-pipecd-encyclopedia
cyberagentdevelopers
PRO
3
200
visionOSでの空間表現実装とImmersive Video表示について / ai-immersive-visionos
cyberagentdevelopers
PRO
1
110
CAMERA-Suite: 広告文生成のための評価スイート / ai-camera-suite
cyberagentdevelopers
PRO
3
270
一休.comレストランにおけるRustの活用
kymmt90
3
580
物価高なラスベガスでの過ごし方
zakky
0
370
【技術書典17】OpenFOAM(自宅で極める流体解析)2次元円柱まわりの流れ
kamakiri1225
0
210
チームを主語にしてみる / Making "Team" the Subject
ar_tama
4
300
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
334
57k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
The Pragmatic Product Professional
lauravandoore
31
6.3k
GraphQLとの向き合い方2022年版
quramy
43
13k
The Invisible Side of Design
smashingmag
297
50k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
7
150
Code Reviewing Like a Champion
maltzj
519
39k
Gamification - CAS2011
davidbonilla
80
5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
328
21k
Code Review Best Practice
trishagee
64
17k
Writing Fast Ruby
sferik
626
61k
Transcript
ABEJA Innovation Meetup #ABEJAmeetup 2017/01/26 ABEJA, Inc. 河崎 敏弥
• MachineLearning/DeepLearningを使った動画解析エンジン • 実行する上で課題になる事 • ABEJAでのアプローチ 今日話す事 2
自己紹介
河崎 敏弥 @toshitanian ABEJA, Inc. IoT Analytics Division Product Owner
• 創業1年の時にABEJAに参画 • バックエンドエンジニア • クラウド上でシステム構築 • IoTデバイスとのシステム連携 • ここ2年はコンテナ推し
社名# 株式会社ABEJA# 設立# 2012年9月10日# 住所# 東京都港区虎ノ門4-1-20田中山ビル10F# 事業内容# ディープラーニングを活用した# 産業構造変革のサポート#
ABEJA Platform Ecosystem "
Unstructured Data Structured Data Analytics Engine Distributed Deep Learning Unstructured
Data ↓ Structured Data API ABEJA Platform
Video Analytics with Deep Learning
Video Analytics with Deeplearning 9 動画 解析結果
10 動画 解析結果
11
12 ? ? ? ? ? ? ? ? ?
? ? ?
困った… 13
• 大量の計算リソースの管理 • 大量のデータを処理 • スケール可能な解析インフラ • 効率の良い解析タスクの分散方法 • 利用リソースはアプリケーション依存.
CPU?GPU?占有コア数・メモリ量 • アプリケーション管理 • 解析アプリに必要な要件は? • 管理する解析アプリは増加の一途(研究開発によってできる事は増える) ML/DLの実行プラットフォームが考慮すべき事 14
ABEJAでのアプローチ
コンテナ
• Elasticな実行インフラ • 計算リソースが足りなければ勝手に増える • 解析タスクの分散はコンテナのスケジューラにお任せ • クラスタのどこかでコンテナが動いて解析が走っている状態 • CPUとかGPUとか毎の要件毎にリソースプールを作ってる
コンテナ - 実行インフラのスケーリング - 17 計算処理が増えても安心!
• 解析エンジンはDocker Imageとしてパッケージ化 • コンテナ内部の構成を定義 • コンテナへのファイル入力方法と、結果の出力方法を仕様として定義 • 仕様に合っている限りは基盤上で動く •
Docker registoryベースのアプリケーション管理 • アプリ毎のバージョン管理 • アプリ毎のリソース要件を付加 コンテナ - アプリケーション管理 - 18 アプリが増えても安心!
19 イケてるしヤバいエンジニア募集中 ABEJA Wantedly