Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyra...
Search
Takuto Wada
PRO
October 29, 2024
Programming
10
2.6k
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
2024年10月29日(火)13:00 ~ 14:30
バルテス共催セミナー「開発失敗につながる偏ったテストしてませんか?プロが教える本当に考えるべきテストバランスのとり方」
Takuto Wada
PRO
October 29, 2024
Tweet
Share
More Decks by Takuto Wada
See All by Takuto Wada
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
41
20k
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
165
83k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
111
88k
The Clean ArchitectureがWebフロントエンドでしっくりこないのは何故か / Why The Clean Architecture does not fit with Web Frontend
twada
PRO
83
34k
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
36
12k
組織に自動テストを書く文化を根付かせる戦略(2024秋版) / Building Automated Test Culture 2024 Autumn Edition
twada
PRO
14
7.1k
これまでと違う学び方をしたら挫折せずにRustを学べた話 / Programming Rust techramen24conf LT
twada
PRO
34
29k
開発生産性の観点から考える自動テスト(2024/06版) / Automated Test Knowledge from Savanna 202406 Findy dev-prod-con edition
twada
PRO
37
36k
自動テスト実行結果の目的を整理する / Organizing objectives of automated test results
twada
PRO
14
3.5k
Other Decks in Programming
See All in Programming
Go言語の特性を活かした公式MCP SDKの設計
hond0413
2
510
Cursorハンズオン実践!
eltociear
2
1.2k
Writing Better Go: Lessons from 10 Code Reviews
konradreiche
3
6.7k
Foundation Modelsを実装日本語学習アプリを作ってみた!
hypebeans
1
130
iOSでSVG画像を扱う
kishikawakatsumi
0
170
GC25 Recap: The Code You Reviewed is Not the Code You Built / #newt_gophercon_tour
mazrean
0
110
Things You Thought You Didn’t Need To Care About That Have a Big Impact On Your Job
hollycummins
0
250
Go言語はstack overflowの夢を見るか?
logica0419
0
580
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
480
オンデバイスAIとXcode
ryodeveloper
0
130
Claude Agent SDK を使ってみよう
hyshu
0
1.4k
TransformerからMCPまで(現代AIを理解するための羅針盤)
mickey_kubo
7
5.2k
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
We Have a Design System, Now What?
morganepeng
53
7.8k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Code Reviewing Like a Champion
maltzj
526
40k
Become a Pro
speakerdeck
PRO
29
5.6k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Into the Great Unknown - MozCon
thekraken
40
2.1k
It's Worth the Effort
3n
187
28k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
The Pragmatic Product Professional
lauravandoore
36
7k
Transcript
ϐϥϛουɺΞΠεΫϦʔϜίʔϯɺ4.63' ࣗಈςετͷ࠷దόϥϯεΛٻΊͯ 5BLVUP8"%" 0DU !όϧςεڞ࠵ηϛφʔ !U@XBEB !UXBEB 📷🙆 🙆 !UXBEB
JEUXBEB
ͳͥࣗಈςετΛ ॻ͘ͷͩΖ͏͔
IUUQTXXX fl JDLSDPNQIPUPTNEHSPVQ ࣗಈςετΛॻ͘ओతࢦඪΛʮίετݮʯʹ͢Δͱɺظతʹࣗಈς ετͷֶशίετɺதظతʹอकίετʹΑͬͯࢥͬͨΑ͏ͳίετݮޮ Ռ͕ಘΒΕͣɺखಈςετʹΔͱ͍͏அΛͯ͠͠·͍͕ͪͰ͢ ࣗಈςετҎ֎ͷٕज़ࢪࡦͰίετݮΛओతʹ͢Δͱࣦഊ͕ͪ͠Ͱ͢ ΞϯνύλʔϯίετݮΛओతʹ͢Δ
IUUQTXXXPSFJMMZDPKQCPPLT ʰ(PPHMFͷιϑτΣΞΤϯδχΞϦϯάʱQ ࣗಈςετͷಈػৗʹมԽΛՄೳʹ͢ΔͨΊ
IUUQTUXJUUFSDPNUPLPSPUFOTUBUVT มߋ༰қੑͷߴ͍ιϑτΣΞʹΑΔΞδϦςΟͷ֫ಘ
ͯ͢ΛΞδϟΠϧͳܗͰػೳͤ͞Δʹɺ༏Εͨઃܭʹ͚ͨϓϥΫςΟεΛ ࣮ફ͢Δඞཁ͕͋Γ·͢ɻͱ͍͏ͷɺ༏ΕͨઃܭʹΑͬͯมߋ͕༰қʹͳΔͨ ΊͰ͢ɻͦͯ͠มߋ͕༰қͰ͋Δ߹ɺ͋ΒΏΔϨϕϧͰ᪳ͳ͘ௐ͕Մೳʹ ͳΔͷͰ͢ɻ ͦΕ͕ͦ͜ΞδϦςΟʔͱ͍͏ͷͳͷͰ͢ɻ ʰୡਓϓϩάϥϚʔୈ൛ʱQ ΞδϦςΟͷຊ࣭͋ΒΏΔϨϕϧͰ᪳ͳ͘มԽ͢Δ
ͳͥࣗಈςετΛॻ͘ͷ͔ 🙅 ίετΛݮ͢ΔͨΊ 🙆 ૉૣ᪳͘ͳ͘มԽ͠ଓ͚ΔྗΛಘΔͨΊ
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
ςετࣗಈԽͱاۀͷۀͷҼՌؔ IUUQTXXXBNB[PODPKQEQ ςετͷࣗಈԽʹ͓͍ͯɺ*5ύϑΥʔϚϯεͷ ༧ଌईͱͳΓ͏Δ͜ͱ͕໌ͨ͠ͷ࣍ͷͭ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ ։ൃऀओମͰड͚ೖΕςετΛ࡞ɾཧ͠ɺ खݩͷ։ൃڥͰ؆୯ʹ࠶ݱɾमਖ਼Ͱ͖Δ͜ͱ ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
IUUQTXXXBNB[PODPKQEQ ςετʹ߹֨ͨ͠ιϑτΣΞͰ͋ΕϦϦʔεՄೳɺෆ߹֨Ͱ͋Εॏେͳ ෆ۩߹͕͋ΔɺͱνʔϜ͕֬৴Ͱ͖ΔΑ͏ͳςετΛ࣮ࢪ͍ͯ͠Δ͜ͱ ޡݕʢِཅੑGBMTFQPTJUJWFʣݟಀ͠ʢِӄੑGBMTFOFHBUJWFʣ͕ଟ ͘ɺ৴པੑʹ͚ܽΔςετεΠʔτ͕͋·Γʹଟ͗͢Δ ৴པͷߴ͍ςετεΠʔτΛ࡞Γ্͛Δܧଓతͳྗͱ ࢿՁ͕͋Δ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ
ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
ޭͱࣦഊɺِཅੑͱِӄੑ IUUQTHJIZPKQEFWTFSJBMTBWBOOBMFUUFS Օॴͷಛఆͱम෮ σϓϩΠɺϚʔδ σϓϩΠɺϚʔδ Օॴͷಛఆͱम෮
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
Ϣχοτ ΠϯςάϨʔγϣϯ && ίετ ࣮ੑ ςετέʔε ߴ
ߴ ܾఆੑ ςετϐϥϛου
ςετϐϥϛουͱΞΠεΫϦʔϜίʔϯΞϯνύλʔϯ IUUQTXBUJSNFMPOCMPHJOUSPEVDJOHUIFTPGUXBSFUFTUJOHJDFDSFBNDPOF
ςετࣗಈԽͱاۀͷۀͷҼՌؔ IUUQTXXXBNB[PODPKQEQ ςετͷࣗಈԽʹ͓͍ͯɺ*5ύϑΥʔϚϯεͷ ༧ଌईͱͳΓ͏Δ͜ͱ͕໌ͨ͠ͷ࣍ͷͭ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ ։ൃऀओମͰड͚ೖΕςετΛ࡞ɾཧ͠ɺ खݩͷ։ൃڥͰ؆୯ʹ࠶ݱɾमਖ਼Ͱ͖Δ͜ͱ ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
IUUQTXXXPSFJMMZDPKQCPPLT ʰγεςϜӡ༻ΞϯνύλʔϯʱQ ͳͥΞΠεΫϦʔϜίʔϯʹͳͬͯ͠·͏ͷ͔ߏత
IUUQTXXXUIPVHIUXPSLTDPNSBEBSUFDIOJRVFTCSPBEJOUFHSBUJPOUFTUT &&ςετͷաࢿ5FDIOPMPHZ3BEBSͰʮ)0-%ʯʹϨʔςΟϯά͞Εͨ
IUUQTXXXUIPVHIUXPSLTDPNSBEBSUFDIOJRVFTCSPBEJOUFHSBUJPOUFTUT ςετࣗಈԽͷྗশࢍʹ͢Δ͕ɺࢲ͕ͨͪޮՌతͰͳ͍ͱߟ͑Δൣͳ౷߹ςετ ʢ˞&&ςετʣʹաࢿ͍ͯ͠Δ৫Λଟ͘ݟ͔͚Δɻ ͜ͷΑ͏ͳςετɺඞཁͳΠϯϑϥɺσʔλɺαʔϏεΛͯ͢උ͑ͨϑϧػೳͷςετ ڥΛඞཁͱ͢ΔͨΊɺ໌Β͔ʹίετ͕͔͔Δɻ ͜ΕΒͯ͢ͷґଘؔͷదͳόʔδϣϯΛཧ͢Δʹɺ͔ͳΓͷௐΦʔόʔϔου͕ ඞཁͱͳΓɺϦϦʔεαΠΫϧ͕͘ͳΓ͕ͪͰ͋Δɻ ࠷ޙʹɺςετͦͷͷ͕੬͘ʹཱͨͳ͍͜ͱଟ͍ɻྫ͑ɺςετ͕ࣦഊͨ͠ͷ͕৽͠ ͍ίʔυͷ͍ͤͳͷ͔ɺόʔδϣϯͷෆҰகʹΑΔґଘؔͷ͍ͤͳͷ͔ɺڥͷ͍ͤͳͷ͔ Λஅ͢Δʹ࿑ྗ͕͔͔ΓɺΤϥʔϝοηʔδ͕ΤϥʔͷݪҼΛಥ͖ࢭΊΔॿ͚ʹͳΔ͜ͱ
΄ͱΜͲͳ͍ɻ ͜ΕΒͷ൷ɺࣗಈԽ͞ΕͨʮϒϥοΫϘοΫεʯ౷߹ςετΛҰൠతʹࢹ͍ͯ͠Δ͜ ͱΛҙຯ͢ΔͷͰͳ͍͕ɺΑΓ༗༻ͳΞϓϩʔνɺࣗ৴ͱϦϦʔεසͷόϥϯεΛͱ ΔͷͰ͋Δͱߟ͑Δɻ &&ςετͷաࢿ5FDIOPMPHZ3BEBSͰʮ)0-%ʯʹϨʔςΟϯά͞Εͨ
4.63'େ͖Ίͷࣗಈςετ܈ͷઃܭ࣌ʹߟྀ͖͢τϨʔυΦϑ IUUQTUFTUJOHHPPHMFCMPHDPNTNVSGCFZPOEUFTUQZSBNJEIUNM S: 動作スピード M: 保守性 U: リソース使用率 R: 信頼性(決定性、安定性)
F: 忠実性(本番環境との類似度) 中心から離れるほど高スコア
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠