Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SIGGRAPH Asia 2020 勉強会 "Computational Holography"
Search
yamdeck
February 28, 2021
Research
0
62
SIGGRAPH Asia 2020 勉強会 "Computational Holography"
yamdeck
February 28, 2021
Tweet
Share
More Decks by yamdeck
See All by yamdeck
SIGGRAPH2020勉強会 "VR Hardware"
yamdeck
1
170
SIGGRAPH2020勉強会 "Creative Fabrication"
yamdeck
1
71
“HCI Research as Problem-Solving”(CHI’16) で学ぶ What is HCI Research ?
yamdeck
0
300
Other Decks in Research
See All in Research
Dynamic World, Near real-time global 10 m land use land cover mapping
satai
3
230
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
310
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
510
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
140
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
620
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
900
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
430
JSAI NeurIPS 2024 参加報告会(AI アライメント)
akifumi_wachi
5
980
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
140
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
290
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
540
DeepSeek-R1の論文から読み解く背景技術
personabb
3
590
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Speed Design
sergeychernyshev
29
940
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
Designing for humans not robots
tammielis
253
25k
Agile that works and the tools we love
rasmusluckow
329
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
24
2.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.7k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
We Have a Design System, Now What?
morganepeng
52
7.6k
Transcript
$PNQVUBUJPOBM)PMPHSBQIZ 4*((3"1)"TJB5FDIOJDBM1BQFST
3 %JTUSJCVUJPOPG5PEBZT1SFTFOUBUJPO /FVSBM)PMPHSBQIZ -FBSOFE)BSEXBSFJOUIFMPPQ )0& 3FOEFSJOH4QFDLMF
/FVSBM)PMPHSBQIZXJUI$BNFSBJOUIFMPPQ 5SBJOJOH%JTQMBZT :*'"/1&/( 46:&0/$)0* /*5*4)1"%."/"#"/ (03%0/8&5;45&*/ 4UBOGPSE6OJWFSTJUZ
લఏࣝͷڞ༗
6 • ޫͷճંɾׯবʹΑͬͯɼ̏࣍ݩʹݟ͑Δޫͷ࠶ੜɾอଘٕज़ʢྫɿࠨਤʣ • ҰൠతʹӈਤͷΑ͏ʹϨʔβʔޫΛࡱӨΦϒδΣΫτͱه༻ͷϓϨʔτʹͯͯࡱ૾͢Δ લఏࣝ ϗϩάϥϜͬͯͳΜͰ͔͢ʁ https://www.litiholo.com/hologram-kits.html ʢൃද࣌লུʣ
7 • ۭؒޫมௐثʢ4-.ʣͱݺΕΔӷথ੍ޚػࡐͷൃలʹΑΓɼػցతʹϗϩάϥϜΛ࡞ɾ੍ޚ͢Δ͜ͱ͕Մೳͱͳͬͯ ͖͍ͯΔ • ݴͬͯ͠·͑ɼ4-.ͱ͍͏֎෦σΟεϓϨΠʹͳΜΒ͔ͷύλʔϯΛදࣔ͢Δͱ ̏࣍ݩը૾ΛදࣔͰ͖Δͱ͍͏͜ͱ • Αͬͯɼ͜ͷ4-.ʹͲΜͳύλʔϯΛදࣔ͢Δ͔Λܭࢉ͢Δ͜ͱ͕ͱͯॏཁʂʂ ࠷ۙͷϗϩάϥϜࣄ
લఏࣝ ʢൃද࣌লུʣ ʢൃද࣌লུʣ
8 • ࠷؆୯ͳ࠷దԽͷྫɿ̎࣍ؔͷ࠷খ୳ࡧ ࠷దԽͬͯͳΜͰ͔͢ʁ https://www.youtube.com/watch?v=_Q4QJO8SEsY લఏࣝ ʢൃද࣌লུʣ
9 • ࠷؆୯ͳ࠷దԽͷྫɿ̎࣍ؔͷ࠷খ୳ࡧ • ࠷దԽͱͯ͠هड़͢Δͱ ࠷దԽͬͯͳΜͰ͔͢ʁ https://www.youtube.com/watch?v=_Q4QJO8SEsY લఏࣝ ʢൃද࣌লུʣ
10 • Ͳ͏ͬͯ࠷খΛͱΔYΛ୳ࡧ͢Δ͔ʁ • ࠷جຊతͳख๏ɼ͖Λͬͯ୳ࡧ͢Δख๏ • ͱ͋Δʹ͓͚Δޯͷٯํ ʹਐΉͱ࠷খʹ͔͏ •
ӈਤͰ͍͏ͱɼͷઓͷ͖ϚΠφεʢԾʹͱ͢Δʣ • XΛ ͷํͣΒ͢ʢX X ʣ • ͢Δͱ࠷খΛͱΔXʹۙͮ͘ • ඍΛ͖ͯ͠ʢޯʣΛऔಘ͢Δ͜ͱ͕࠷దԽʹඞਢ ࠷దԽʹඞཁͳޯ લఏࣝ
11 • ̎࣍ؔͷΑ͏ͳ؆୯ͳؔͳΒී௨ʹඍͯ͠ྑ͍͕ɼ࣮ࡍͷͰѻ͏ํఔࣜͬͱෳࡶ • Ұൠతʹɼ͜Ε·Ͱ̏ͭͷख๏͕ଟ͔ͬͨ • खܭࢉ • ඍ •
γϯϘϦοΫඍ • ۙɼػցֶशʢಛʹ/FVSBM/FUXPSLʣʹ͓͚Δ όοΫϓϩύήʔγϣϯͷ࣮ʹද͞ΕΔࣗಈඍ͕ ྲྀߦ Ͳ͏ͬͯඍʢޯʣΛܭࢉ͢Δ͔ʁ લఏࣝ "Automatic Differentiation in Machine Learning: a Survey" (2018) https://jmlr.org/papers/v18/17-468.html
12 • ΊͬͪΌΊͪΌࡶʹݴ͏ͱʮඍΛϓϩάϥϜͰ؆୯ʹͬͯ͘ΕΔͭʯ • ܭࢉաఔΛϓϩάϥϜʹ͢Δͱ͍͏͜ͱɼԼਤͷΑ͏ʹجຊతͳܭࢉͷΈ߹ΘͤͰ࣮͢Δ͜ͱ • ̍ͭ̍ͭͷܭࢉ୯७ͳͷͰɼ̍ͭ̍ͭͷඍܭࢉ͍͢͠ • ͜ͷ̍ͭ̍ͭͷඍΛͬͯɼతؔͷඍʢޯʣΛܭࢉ͢Δ •
େࣄͳ͜ͱɼ࣮Ͱ͖Εඍ͕ՄೳʹͳΔʹޯ͕ٻΊΒΕΔͱ͍͏͜ͱ • ʔʼ࠷దԽʹ͑Δʂʂʂ ࣗಈඍͬͯͳΜͰ͔͢ʁ લఏࣝ
13 • ϗϩάϥϜ͕Ͳ͏͍͏ͷ͔ͷհ • ࠷దԽʹ͍ͭͯͷجຊతͳհ • ࣗಈඍͱ͍͏ٕज़ʹؔ͢Δجຊతͳհ લఏࣝͷཧ ѻͬͨ༰ ʢൃද࣌লུʣ
ຊจͷհ
15
16 • ࣗಈඍΛ༻͍ͨ࠷దԽ͕͜Ε·Ͱͷશͯͷ࠷దԽख๏Λ্ճΔਫ਼Λୡͨ͠ͱ͍͏'JOEJOHT • $BNFSBJOUIFMPPQΛߏஙͯ͠ϗϩάϥϜΛ͞Βʹ࠷దԽ • ϦΞϧλΠϜॲཧͷͨΊͷ/FVSBM/FUXPSLߏங ಋೖ จͷίϯτϦϏϡʔγϣϯ ,FZXPSETࣗಈඍɾ࠷దԽɾ*OGFBTJCMF.PEFM%JGGFSFOUJBUJPO
0QUJNJ[BUJPO ɾ999JOUIFMPPQ
ίϯτϦϏϡʔγϣϯ̍ɿ ࣗಈඍΛ༻͍ͨϗϩάϥϜ࠷దԽ
18 • ͳΜΒ͔ͷύλʔϯПΛ4-.ʹදࣔ͢Δͱɼ݁Ռ ͕ಘΒΕΔ • ͜ΕΛඪͱͷ͕ࠩ࠷খ͘͞ͳΔΑ͏ʹʢ ʣ͢Δͷ͕ຊจͰͷ࠷దԽ • ࠷దԽͷߋ৽ʹ͋ͨͬͯɼࣗಈඍʹΑͬͯٻΊΒΕΔޯΛ׆༻ ̂
f(ϕ) ̂ f(ϕ) − Atarget = 0 ຊจʹ͓͚ΔͷఆࣜԽ ຊจʹ͓͚Δ࠷దԽ ೖྗɿП ඍՄೳ γϛϡϨʔγϣϯ ̂ f ग़ྗɿ ̂ f(ϕ)
19 • ·ͣӈଆͷάϥϑͷΈʹ • 4(%͕ఏҊख๏Ͱɼ8)ɾ(4͕طଘख๏ • ಛʹTUBUFPGUIFBSUͷख๏Ͱ͋Δ8)Λ্ճΔͷڻ͖ ίϯτϦϏϡʔγϣϯ̍ ࣗಈඍΛ༻͍ͨ࠷దԽ
20 • ͜ͷࣸਅͩͱຊʹେ͖͘վળ͍ͯ͠Δ͔֬ೝͮ͠Β͍͕ɼ14/3ɾ44*.࠷ߴ͍݁ՌΛ͍ࣔͯ͠Δ • ָ࣮͕ͱ͍͏ͷඇৗʹخ͍͠ϙΠϯτ • ຊจ1ZUPSDIͰ࣮͞ΕɼࣗಈඍΛ༻͍ͯޯܭࢉ͕ͳ͞Ε͍ͯΔ ίϯτϦϏϡʔγϣϯ̍ ࣗಈඍΛ༻͍ͨ࠷దԽ
21 • ࠓݟͨख๏ͱ͍͏ͷࡢࠓͷඍՄೳͳγϛϡϨʔγϣϯͱಉ͡ϫʔΫϑϩʔͰ͋Δ͜ͱ͕Ӑ͑Δ • ඍՄೳϨϯμϦϯάʢFY.JUTVCBʣɾඍՄೳϓϩάϥϛϯάʢFY%JGG5BJDIJʣͳͲ • ೖྗมʢPS/FVSBM/FUXPSLʣΛ࠷దԽ͢Δʹద༻ՄೳͰɼ ࠷దԽʹ͓͚ΔޯܭࢉͷͨΊʹࣗಈඍʹରԠͨ͠ඍՄೳͳγϛϡϨʔλΛ׆༻͍ͯ͠Δ ࣗಈඍʢඍՄೳγϛϡϨʔγϣϯʣͷࡢࠓ ඍՄೳγϛϡϨʔγϣϯͷྲྀߦ
ೖྗɿП ඍՄೳ γϛϡϨʔγϣϯ ̂ f ग़ྗɿ ̂ f(ϕ) ʢൃද࣌লུʣ
22 • ࣗಈඍʹରԠͨ͠ి࣓ܭࢉʢ'%'%๏ʣΛ࣮͠ɼܗঢ়࠷దԽʹద༻ͨ͠ • ԼਤޫͷʹԠͯ͡ܦ࿏ΛΓସ͑Δܗঢ়࠷దԽ • ࠷దԽରʢೖྗมʣɿփ৭ྖҬͷܗঢ় • ඍՄೳγϛϡϨʔγϣϯɿ'%'% •
࠷దԽɿܗঢ়Λೖྗͱͯ͠'%'%γϛϡϨʔγϣϯΛ࣮ߦɽ࣮ߦ݁Ռ͔ΒࣗಈඍͰޯΛಋग़͠ɼܗঢ়Λߋ৽ɽ ࣗಈඍʢඍՄೳγϛϡϨʔγϣϯʣͷࡢࠓ ۩ମྫ̍ɿ'PSXBSE.PEF%JGGFSFOUJBUJPOPG.BYXFMM`T&RVBUJPOT ॳظܗঢ় ࠷దԽܗঢ় ೖྗɿ ܗঢ় ඍՄೳ γϛϡϨʔγϣϯɿ '%5%๏ ग़ྗɿ ޫͷൖܦ࿏ ʢൃද࣌লུʣ
23 • ෳͷϏϡʔϙΠϯτը૾͔Βɼ͋ΒΏΔํͷϏϡʔϙΠϯτը૾ΛੜͰ͖ΔΑ͏ʹ͢Δݚڀ • //ೖྗɿY Z [ В П •
//ग़ྗɿ3(#М • ඍՄೳγϛϡϨʔγϣϯɿ7PMVNF3FOEFSJOH • ࠷దԽɿ3FOEFSJOH݁ՌʹΑΔ-PTT͔ΒඍͰ୧͍ͬͯͬͯ//Λߋ৽ ࣗಈඍʢඍՄೳγϛϡϨʔγϣϯʣͷࡢࠓ ۩ମྫ̎ɿ/F3'3FQSFTFOUJOH4DFOFTBT/FVSBM3BEJBODF'JFMETGPS7JFX4ZOUIFTJT ೖྗɿ ࠲ඪɾํ ඍՄೳԋࢉɿ /FVSBM/FUXPSL 7PMVNF3FOEFSJOH ग़ྗɿ ϏϡʔϙΠϯτը૾ ʢൃද࣌লུʣ
ίϯτϦϏϡʔγϣϯ̎ɿ %JSFDUMZ*OGFBTJCMFϞσϧͷ࠷దԽ $BNFSBJOUIFMPPQ
25 • γϛϡϨʔγϣϯͰ΄΅ϊΠζͷͳ͍ը૾͕ੜ͞Ε͍ͯΔʢࣼઢࠨʣ ͕ɼ࣮ࡍͷޫֶܥΛ௨͢ͱϊΠζͷ͋Δը૾͕؍ଌ͞ΕΔʢࣼઢӈʣ • ͜Ε࣮ࡍͷޫֶܥʹ֤ޫֶܥݻ༗ͷΈ͕͋ΔͨΊ • ͜ͷΈΛղফ͢ΔͨΊʹɼ$BNFSBJOUIFMPPQPQUJNJ[BUJPOΛ࣮ ίϯτϦϏϡʔγϣϯ̎ ࣮ࡍͷޫֶܥʹΈ͕͋Δ
Simulation Result Physical Result ݻ༗ͷΈ͋Γ
26 • ίϯτϦϏϡʔγϣϯ̍ͰɼγϛϡϨʔγϣϯ্ͷؔ ʹରͯ͠࠷దԽΛ ߦ͍ͬͯͨʢӈ্ࣜʣ • ͜Εͱಉ͡Α͏ʹ࣮ࡍͷޫֶܥʹରͯ͠࠷దԽΛߦ͍͍͕ͨɼ ࣮ࡍͷޫֶܥͷൖॲཧΛඍ͢Δ͜ͱͰ͖ͳ͍ ̂ f
Ͳ͏࣮ͬͯޫֶܥʹ࠷దԽॲཧΛΈࠐΉ͔ʁ ίϯτϦϏϡʔγϣϯ̎ ͜ΕඍͰ͖ͳ͍ γϛϡϨʔγϣϯ্ͷൖؔɿ ࣮ࡍͷޫֶܥͰͷൖؔɿ ̂ f f
27 • ͔͠͠ɼγϛϡϨʔγϣϯϞσϧͱ࣮ޫֶܥ΄΅Ұக͍ͯ͠Δͱݟͳ͢͜ͱͰ͖Δ ˠඍύʔτ͚ͩγϛϡϨʔγϣϯϕʔεʹஔ͖͑ͯ͠·͓͏ʂ Ͳ͏࣮ͬͯޫֶܥʹ࠷దԽॲཧΛΈࠐΉ͔ʁ ίϯτϦϏϡʔγϣϯ̎ ࣮ޫֶܥͷ ൖɿG ग़ྗɿG П
ඍՄೳγϛϡϨʔγϣϯ Ͱ ஔ͖͑ͯඍ ̂ f ೖྗɿП ೖྗПΛ࠷దԽ ஔ͖͑ ஔ͖͑
• ΧϝϥͰ࣮ࡍʹࡱӨͨ͠ϗϩάϥϜͷ݁ՌΛͬͯ࠷దԽ͠Α͏ • ΧϝϥͰࡱӨͨ͠ը૾ΛMPTTؔʹΈࠐΉ ͭ·ΓɼΧϝϥը૾ͱඪը૾ͷࠩΛMPTTͱఆٛ͢Δ • ޯγϛϡϨʔγϣϯϞσϧΛ׆༻ͯ͠ɼҐ૬Λߋ৽͠Α͏ ίϯτϦϏϡʔγϣϯ̎ Ͳ͏࣮ͬͯޫֶܥʹ࠷దԽॲཧΛΈࠐΉ͔ʁ Captured
Image: f(ϕk−1) SLM Phase: ϕk−1 Propagation Function: f ࣮ޫֶܥͷࡱӨ݁ՌΛΈࠐΜͩߋ৽ࣜ Χϝϥͱඪը૾ͷࠩ ஔ͖͑ඍܭࢉ 28
29 • ϊΠζ͕ܰݮ͞ΕɼΒ͔ͳ݁Ռ͕ಘΒΕΔΑ͏ʹͳͬͨ • ࠨɿγϛϡϨʔγϣϯ্ͷ࠷దԽͷΈɼӈɿΧϝϥࡱӨΛؚΊͨ࠷దԽ ࣮ޫֶܥͷ݁ՌΛͱʹ࠷దԽͨ݁͠Ռ ίϯτϦϏϡʔγϣϯ̎
30 • දࣔը૾̍ຕ̍ຕʹରͯ͠࠷దԽΛ͢Δඞཁ͕ൃੜ͍ͯ͠Δʢ͔͔࣌ؒΓ͗͢ʣ • ޫֶܥͷಛੑΛֶशͯ͠ɼͲΜͳදࣔը૾ʹରͯ͠ରԠͰ͖ΔϞσϧΛֶशͰ͖ͳ͍͔ʁ • ˠ$BNFSBJOUIFMPPQ.PEFM5SBJOJOH • ࢥ͍ͭ͘؆ܿͳख๏ $POWPMVUJPOBM
/FVSBM/FUXPSLΛ׆༻ͨ͠ख๏ • ͨͩ/FVSBM/FUXPSLʹ͢ΔͱͲ͏͍ͬͨཁૉ͕ىҼ͍ͯ͠Δ͔ͷੳ͕ࠔ • ˠຊจͰɼ1IZTJDBMMZ#BTFE.PEFMΛߏங ୯७ͳ$BNFSBJOUIFMPPQͷ ίϯτϦϏϡʔγϣϯ̎ γϛϡϨʔγϣϯ ࠷దԽҐ૬ɿϕ /FVSBM/FUXPSL *OQVU 0VUQVU ϕ ϕ′ ࣮ޫֶܥͰͷ ग़ྗɿf(ϕ′ ) NNΛֶश
31 • 1IZTJDBMMZ#BTFE.PEFM̐ཁૉ͔ΒΔʢӈԼࣜʹʣ • $POUFOU*OEFQFOEFOU4PVSDFBOE5BSHFU'JFME7BSJBUJPO • .PEFMJOH0QUJDBM1SPQBHBUJPOXJUI"CFSSBUJPOT • .PEFMJOH1IBTF/POMJOFBSJUJFT •
$POUFOUEFQFOEFOU6OEJSFDUFE-JHIU • શύϥϝʔλΛ͋ΘͤͯВͱఆٛ͠ɼͦΕΛֶश ίϯτϦϏϡʔγϣϯ̎ $BNFSBJOUIFMPPQ.PEFM5SBJOJOH มԽ ඍՄೳ γϛϡϨʔγϣϯ ̂ fθ ೖྗɿ ࠷దԽҐ૬ ϞσϧύϥϝʔλВ ϕ ࣮ޫֶܥͰͷ ग़ྗɿfθ (ϕ′ ) ௨ৗͷൖࣜ ϊΠζཁૉ͕ύϥϝλϥΠζ͞ΕͯΈࠐ·Εͨൖࣜ
32 • $*5-0QUJNJ[BUJPOϞσϧԽ͠ͳ͍Ͱը૾͝ͱʹ࠷దԽ ͢Δख๏ • $*5-DBMJCSBUFE.PEFM͕ը૾ʹґଘͤͣɼൖϞσϧΛֶश ͤͨ͞ख๏ • $*5-0QUJNJ[BUJPO͕ϕετύϑΥʔϚϯεΛൃش͢Δ͕ɼ $*5-DBMJCSBUFE.PEFMطଘख๏Λ্ճͬͨ
݁Ռͷൺֱ ίϯτϦϏϡʔγϣϯ̎
33 • ਓؒΛඍ͢Δ͜ͱͰ͖ͳ͍ͷͰɼਓؒΛ͋ΔϞσϧʹஔ͖͑ͯʢ#MBDLCPYγεςϜͱͯ͠औΓѻͬͯʣ ࠷దԽʹΈࠐΉΑ͏ͳ͕͋Δ • ྫɿ)VNBOJOUIFMPPQΛ׆༻ͨ͠ਓؒ("/ %JSFDUMZ*OGFBTJCMFϞσϧͷ࠷దԽ ඍͰ͖ͳ͍ྫɿਓؒ BΛೖྗͱͯ͠
ར༻ ਓ͕ؒஅ %JTDSJNJOBUPS ग़ྗC ඍՄೳͳϞσϧͰ ਓؒΛஔ͖͑ɼ ޯܭࢉʹ׆༻ //͕ੜ (FOFSBUPS ɿB NNΛֶश ʢൃද࣌লུʣ
ίϯτϦϏϡʔγϣϯ̏ɿ ܭࢉߴԽͷͨΊͷ/FVSBM/FUXPSLͷར༻
35 • ࠷దԽجຊతʹΠςϨʔγϣϯΛඞཁͱ͢ΔͷͰ͕͔͔࣌ؒΔ • ɼҐ૬Λܭࢉ͢ΔΑ͏ͳߴख๏͕ٻΊΒΕΔ • ຊจͰ)PMP/FUͱ͍͏ωοτϫʔΫΛΈɼߴԽΛ࣮ݱ ίϯτϦϏϡʔγϣϯ̏ ܭࢉߴԽ
36 • ͱ͍ͬͨඍՄೳͳཧԋࢉΛؚΊͯMPTTܭࢉʹ׆༻͢ΔωοτϫʔΫΞʔΩςΫνϟͷΈํ͕ಛతʁ ʢ࠷ۙ૿͍͑ͯΔؾ͢Δʣ ̂ f −1 ̂ fθ
ωοτϫʔΫΞʔΩςΫνϟ ίϯτϦϏϡʔγϣϯ̏ ֶशର ֶशର ඍՄೳԋࢉ ඍՄೳԋࢉ
37 • ࠷దԽϧʔϓΛඞཁͱ͠ͳ͍ख๏ಉ࢜ͰൺͯΈΔͱɼ طଘख๏Λ্ճ͍ͬͯΔ͜ͱ͕Θ͔Δ ݁Ռ ίϯτϦϏϡʔγϣϯ̏
૯ׅ
39 • ίϯτϦϏϡʔγϣϯ̍ɿࣗಈඍͱඍՄೳγϛϡϨʔλͱ࠷దԽ • ࣗಈඍʹରԠͨ͠ඍՄೳγϛϡϨʔγϣϯʹΑΔ࠷దԽ͕࠷ྑ͍݁ՌΛ࣮ݱ • ඍՄೳγϛϡϨʔγϣϯΛ׆༻ͨ͠࠷దԽࠓޙ৭ʑͳͰొ͢ΔͩΖ͏ • ίϯτϦϏϡʔγϣϯ̎ɿ%JSFDUMZ*OGFBTJCMFϞσϧͷ࠷దԽ •
࣮ޫֶܥͷΑ͏ʹܭࢉػͰѻ͑ͳ͍ͷͰ͋ͬͯɼஔ͖͑ͰඍՄೳʹ͢Δ͜ͱͰ࠷దԽॲཧͷதʹ ΈࠐΉ͜ͱ͕Ͱ͖Δ • ϋʔυΣΞͷΈͳΒͣɼਓؒͷΑ͏ͳੜରͱͳΓ͏Δߟ͑ํͰ͋Ζ͏ • ίϯτϦϏϡʔγϣϯ̏ɿ/FVSBM/FUXPSLʹΑΔߴԽ • ඍՄೳͳԋࢉͰ͋Εɼ//ͷܗΛऔΒͳͯ͘MPTTؔʹΈࠐΜͰɼֶशʹ׆༻Ͱ͖Δ • ͷࢪ͞Εͨ//"SDIJUFDUVSFࠓޙӹʑ૿͑ΔͩΖ͏ ૯ׅ
-FBSOFE)BSEXBSFJOUIFMPPQ1IBTF3FUSJFWBMGPS )PMPHSBQIJD/FBS&ZF%JTQMBZT 1SBOFFUI$IBLSBWBSUIVMB &UIBO5TFOH 5BSVO4SJWBTUBWB )FOSZ'VDIT 'FMJY)FJEF 6/$$IBQFM)JMM 1SJODFUPO6OJWFSTJUZ
41 • ޫֶܥͷಛੑΛֶशͯ͠ɼͲΜͳදࣔը૾ʹରͯ͠ରԠͰ͖ΔϞσϧΛֶशͰ͖ͳ͍͔ʁ • ࢥ͍ͭ͘؆ܿͳख๏ $POWPMVUJPOBM /FVSBM/FUXPSLΛ׆༻ͨ͠ख๏ //Λ༻͍ͨղܾํ๏ /FVSBM)PMPHSBQIZʹ͓͚ΔఏҊ γϛϡϨʔγϣϯ
࠷దԽҐ૬ɿϕ /FVSBM/FUXPSL *OQVU 0VUQVU ϕ ϕ′ ࣮ޫֶܥͰͷ ग़ྗɿf(ϕ′ ) NNΛֶश
42 • ຊจͷఏҊख๏ͷύΠϓϥΠϯԼਤ • ᶃҐ૬ 4-.໘ ͔Βൖܭࢉɹᶄൖܭࢉ͞Εͨཧతͳը૾Λݱ࣮ͱಉ͡ϊΠζ࠶ݱΛͰ͖Δ//ͰΞτϓοτ ᶅϊΠζ࠶ݱ͞Εͨը૾ͱλʔήοτը૾ͷࠩ MPTT ͔ΒɼೖྗҐ૬Їʹର͢ΔޯܭࢉɹᶆҐ૬ߋ৽
࠷దԽ ΞΠσΞࣗମ͔ͳΓ͍ۙʢҙࣝҰॹʹͲ͏ͬͯޫֶϊΠζΛແ͔͘͢ʣ -FBSOFE)BSEXBSFJOUIFMPPQͰͷ࣮
43 • %JTDSJNJOBUPSͱ(FOFSBUPS͔ΒΔ("/ͷωοτϫʔΫϞσϧͱͳ͍ͬͯΔ • ݱ࣮ͷΩϟϓνϟը૾ʹͳΔΑ͏ͳ(FOFSBUPSΛֶश্ͤͨ͞ͰɼͦͷϞσϧΛͬͯೖྗҐ૬Їͷ࠷దԽʹҠΔ ΞΠσΞࣗମ͔ͳΓ͍ۙʢҙࣝҰॹʹͲ͏ͬͯޫֶϊΠζΛແ͔͘͢ʣ -FBSOFE)BSEXBSFJOUIFMPPQͰͷ࣮
44 ηοτΞοϓී௨ 0QUJDBM4FUVQ
45 طଘख๏ͱͷൺֱ %JTQMBZ3FTVMUT
%FTJHOBOE'BCSJDBUJPOPG'SFFGPSN)PMPHSBQIJD0QUJDBM &MFNFOUT $IBOHXPO+BOH 0MJWFS.FSDJFS ,JTFVOH#BOH (BOH-J :BOH;IBP %PVHMBT-BONBO 'BDFCPPL3FBMJUZ-BCT3FTFBSDI
47 • χΞΞΠσΟεϓϨΠʹ͓͍ͯ࠷ྑ͘ݟΔ)0&ͷ༻ํ๏ɼ ϝΨωܕσόΠεͷϨϯζ෦ʹूޫੑೳΛ࣋ͨͤͨ)0&Λஔ͢Δͱ͍͏ͷ • ΑΓෳࡶͳઃܭʹ͑Δͷ͕ཉ͍͠ɼͱ'#3FBMJUZ -BC͕ओு͢Δͷྑ͘Θ͔Δؾ͕͢Δ 73"3σόΠεͷখܕԽʹඞਢͷޫֶૉࢠ 8IBUJT)PMPHSBQIJD0QUJDBM&MFNFOU )0&
[Maimone et al. 2017]
48 • ಠࣗͷબੑΛߟྀͨ͠ϑϦʔϑΥʔϜ)0&ͷ࠷దԽख๏ • )0&༻ͷμΠϠϞϯυટʹΑΔϑϦʔϑΥʔϜද໘ɾͭͷ໘มௐΞʔϜΛඋ͑ͨϗϩάϥϑΟοΫϓϦϯλʔ ͷ༻ͱ͍ͬͨɼ̎छྨͷϑϦʔϑΥʔϜ)0&ख๏ • ྆ํͷΞϓϩʔνʹ߹Θͤͯௐ͞Εͨݎ࿚ͳ໘ղΞϧΰϦζϜ • "3ΠϝʔδίϯόΠφʔɾϔουΞοϓσΟεϓϨΠɾϨϯζΞϨΠͳͲͷ
σΟεϓϨΠ͓ΑͼΠϝʔδϯάΞϓϦέʔγϣϯͷྫ • ϑϧΧϥʔ$BVTUJDTӨ)0&ͷσϞ ຊจͷߩݙ $POUSJCVUJPOT
49 • ʢ͢Έ·ͤΜɼ͜͜ਂ͘ಡΊͯ·ͤΜʣ ϑϦʔϑΥʔϜ)0&ͷ࠷దԽʢσβΠϯʣ $POUSJCVUJPO
50 • )0&ޫͷׯবʹΑͬͯه͞ΕΔ • ఏҊख๏ͱͯ̎ͭ͠ͷΨϥεͷϑϦʔϑΥʔϜαʔϑΣεʹΑͬͯׯবͤͯ͞ɼ)0&ͷύλʔϯΛ࡞Δ ΨϥεʹΑΔϑϦʔϑΥʔϜαʔϑΣε $POUSJCVUJPO HOEͷম͖͚ ϑϦʔϑΥʔϜΨϥεද໘ͷ
51 • 4-.ʹΑͬͯมௐ͞Εͨޫ͕ೋํ͔Βൖ͖ͯͯ͠ɼͦͷׯবΛه͢Δख๏ ϗϩάϥϜϓϦϯλʔʹΑΔ)0&ͷ࡞ $POUSJCVUJPO ϗϩάϥϜϓϦϯλʔʹΑΔHOEͷম͖͚
52 3FTVMUT "QQMJDBUJPOT ඇٿ໘ϨϯζHOE (a,b,c) HUDϨϯζHOE (d,e,f) Printed HUDϨϯζHOE (g,h)
ϨϯζΞϨΠHOE (i) Caustic HOE (j,k,l)
3FOEFSJOH/FBS'JFME4QFDLMF4UBUJTUJDTJO4DBUUFSJOH .FEJB $IFO#BS *PBOOJT(LJPVMFLBT "OBU-FWJO %FQBSUNFOUPG&MFDUSJDBM&OHJOFFSJOH 5FDIOJPO *TSBFM 3PCPUJDT*OTUJUVUF $BSOFHJF.FMMPO6OJWFSTJUZ
64"
54 εϖοΫϧϊΠζͱ 8IBUJTTQFDLMFOPJTFʁ ϨʔβʔͷΑ͏ͳίώʔϨϯτޫΛࢄཚഔ࣭ʹͯΔͱɼεϖοΫϧϊΠζͱݺΕΔϥϯμϜͳϊΠζ͕ൃੜ͢Δ ʰࢄཚഔମதͷମΠϝʔδϯά͓Αͼମೝࣝʹؔ͢Δݚڀʱ(2016) ΑΓը૾Ҿ༻
55 • ͜͏ͨ͠ࢄཚഔ࣭Λ௨աͨ͠ޙͷεϖοΫϧϊΠζΛϨϯμϦϯά͢Δख๏ͷఏҊ • ʢ͢Έ·ͤΜʣ ຊݚڀͷߩݙ $POUSJCVUJPOPG5IJT3FTFBSDI