Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
創業140年の古い会社でデータの民主化を進めた話 / nikkei data driven 2...
Search
Yosuke
August 23, 2018
Technology
17
24k
創業140年の古い会社でデータの民主化を進めた話 / nikkei data driven 20180823
THE GUILD勉強会 #03「データ×UXデザイン」資料
データ分析のトレーニング「データ道場」など日経のデータドリブン関連の施策について
Yosuke
August 23, 2018
Tweet
Share
More Decks by Yosuke
See All by Yosuke
ONA20 presentation: How Nikkei improves user retention through consultation
yosukesuzuki
1
360
How Nikkei improves user retention with new subscriber consultation
yosukesuzuki
0
440
Google App Engine の日経での利用事例 / appengine at nikkei
yosukesuzuki
5
2.3k
Development and Infrastructure for Microservice Architecture
yosukesuzuki
0
1.1k
PythonでもPythonじゃなくても使える汎用的なMicroservice実行環境 / nikkei microservice
yosukesuzuki
13
18k
5 years with Google App Engine
yosukesuzuki
2
1.9k
日経電子版 開発内製化の取り組み / nikkei web development 2015
yosukesuzuki
54
37k
Other Decks in Technology
See All in Technology
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
560
役割は変わっても、変わらないもの 〜スクラムマスターからEMへの転身で学んだ信頼構築の本質〜 / How to build trust
shinop
0
160
「魔法少女まどか☆マギカ Magia Exedra」での負荷試験の実践と学び
gree_tech
PRO
0
600
AI開発ツールCreateがAnythingになったよ
tendasato
0
110
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.1k
異業種出身エンジニアが気づいた、転向して十数年経っても変わらない自分の武器とは
macnekoayu
0
290
AWSで始める実践Dagster入門
kitagawaz
0
310
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
3
440
エニグモ_会社紹介資料(エンジニア職種向け).pdf
enigmo_hr
0
2.2k
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
560
Automating Web Accessibility Testing with AI Agents
maminami373
0
1k
kubellが考える戦略と実行を繋ぐ活用ファーストのデータ分析基盤
kubell_hr
0
140
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Side Projects
sachag
455
43k
Faster Mobile Websites
deanohume
309
31k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Music & Morning Musume
bryan
46
6.8k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
It's Worth the Effort
3n
187
28k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Writing Fast Ruby
sferik
628
62k
Transcript
1 創業140年の古い会社でデータの民主化を 進めた話 日本経済新聞社 鈴木陽介
鈴木陽介(Suzuki Yosuke) ウェブサイトの運用・編集・記者、新聞記者などを経て2009年から 日経電子版の企画開発に関わる。 2011年ごろから社内エンジニアによる開発の内製化を主導、初代 スマホウェブ版や「爆速化」したウェブ版を担当。 2017年データドリブンを加速するための教育制度「データ道場」を 開始。現在は機械学習・AIのプロジェクトを管轄しつつ、開発環境 の改善や社内人員のトレーニングに取り組んでいる。 自己紹介
2
日本経済新聞社について 3 1876年(明治9年)12月創刊 約140年の歴史 全世界で300万部(紙・電子 版の合計)を発行する世界 最大の経済新聞社
4 日経電子版って 消費者向けのインターネット有料サービスの先駆け。 月額4200円!という高いサービスに60万人もの有料会員がいる ※紙とのセット売りでは電子版部分は1000円
• ブラウザー向け • iPhone/Android向けアプリ • 認証、課金 • CRM・データ分析 • コンテンツマネジメント・システム
• 広告 • グループ会社、サードパーティー連携 • ビジュアライゼーションコンテンツ制作 などの企画・開発を手がける 日経電子版の開発業務 5
6 ビジュアライゼーション データ、技術、デザ インを総合的に駆 使するコンテンツ開 発 vdata.nikkei.com
日経電子版で働く人たち 7 エンジニア、データサインティスト、デザイナー、マーケ ター、ビジネス企画
8 FTとの連携 • 2015年買収 • 爆速サイト開発 • データ分析プロジェクト ◦ 1人渡英中
• 編集システムなどの情報 を共有 • 英語力++ ◦ 英語ランチ会も実施中
新聞販売店が間に入り、読者が誰で、どんな風に、どんな記事を 読んでいるかの情報は持っていなかった。 ※アンケート等で収集したものは除く 日経電子版以前 9
電子版では読者との直接取り引きとなり、いつ、誰がどんな風 にどの記事を読んでいるかわかるようになった 日経電子版以降(2010年)以降 10
800万人以上の日経ID会員データ 250万件の記事 • どのボタンを押したか • どこまでスクロールしたか • どの記事の見出しをみて、どの記事を結果的に読ん だか/読まなかったか 平日1日のデータ量 1億件
11
読者の過去20日間の利用頻度、閲覧した記事本数か ら算出される数値を事業に関わる人全体で向上させる べきものとして定義 →エンゲージメント指標 →この数値が高いほど読者が解約しにくい データを元に共通の目標を設定 12
13 • Super Loyal • Loyal • Middle • Light
• Dormant エンゲージメントの数値によって5つのカテゴリーにわ けている エンゲージメントレベル
14 • 外部のSaaS型+オンプレからAWS上に内製のプラットフォーム を構築 • データを分析したり、収集したりする自由度が圧倒的に上がった ◦ RedashやElasticsearch/Kibanaで分析 新データプラットフォーム Atlas
ここまでの話 • そもそも顧客データを持っていなかった会社が集める ようになった • 自社製のデータプラットフォームを構築 →あとはデータを扱える人を増やしていく 「データ分析の民主化」 15
お金や人をかけて、仕組みは作った。 、、、でも誰も使わない 実際よくある話 16 触り方がわからない、 アクセス方法がわからない、 忙しくて手が付かない
2017年からデータドリブンを進めていくためのトレーニングの枠組み として「データ道場」を開始 そこで「データ道場」 17
データ道場の概要 • 3ヶ月に渡ってデータ分析のためのノウハウを身につけるための トレーニング • 毎週1日3時間、5〜10人ぐらい • 宿題が出るときも • データ分析のトレーニングをやっているデータミックス社にカリ
キュラム作成と講師役を委託 18
データ道場のカリキュラム 19 • SQL基礎 ◦ 簡単なSELECT文 ◦ 縦持ち横持ち ◦ with句
• 実践編 ◦ PDCAサイクルをど う回すのか ◦ 各チームごとの事 情に合わせてカス タマイズ
施策をやるときの基本姿勢を身につける • ビジネス上のゴールに結びついているか • ビジネスゴールに結びつくKPIを設定 • KPIとそれをトラッキングするダッシュボード • 施策の中止条件 •
サンプルサイズの決め方 • 予想されるインパクト(期待値) ◦ できればシミュレーションする 20
21 ダッシュボード 各担当者がredashでクエリを書いて、ダッシュボードを作成 Kibanaなど他の可視化ツールを使うこともある
• シミュレーションをしてみると、やろうと思っていた施 策があまりインパクト出ないかもしれないことがわか る ◦ 例:機械学習でユーザーの回遊性をあげるよりも、 スマホアプリのインストール率/利用率を上げるほう が効果がある • 特に直接経費がかかるようなものは試算してみる
施策をする前にインパクトを考えてみる 22
事例:PC版の記事下リンクパーツ 23 データ道場に参加した担当者がその後UI改善に取り組んで、クリッ ク率を4倍にアップさせた
• 分析・マーケティング担当者向け • 編集関係者向け • PCサイト担当者向け • SQL基礎編のみコース(デザイナー、マーケティング、広告担当 者なども) •
B2B担当者向け • マーケティング・プロモーション担当者向け 社員200人以上がSQLの基礎的な知識を持っている これまでのデータ道場 24
• データ分析はまともにやろうとするとかなりコストがかかる ◦ 一部のデータサイエンティストだけに任しておいても、やれる範 囲が限られる • 分析をすることで担当者が初めて足りないデータに気がつく ◦ たいてい最初はPVなどの最低限のデータしかとってない ◦
分析ができないことで、追加で取得しないといけないデータがわ かる→開発時にそれを入れ込むようになる • 各プロダクトの担当者が関わることで初めて本当に役立つデータ が取れるようになる そもそも何でデータの民主化が必要なんだっけ? 25
• まだまだ道半ば • より大きな施策にたくさん取り組んでいかないといけな い ◦ その際に必ずデータを見る能力が必要になる ◦ たくさんの人が同じ知識レベルで話せるようにしたい 実際には
26