Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMでコードレビューする際の自分用環境を整える
Search
YuheiNakasaka
May 09, 2025
Technology
0
120
LLMでコードレビューする際の自分用環境を整える
この記事を社内勉強会用に雑にまとめたやつ
https://zenn.dev/razokulover/articles/058fede74dbbe0
YuheiNakasaka
May 09, 2025
Tweet
Share
More Decks by YuheiNakasaka
See All by YuheiNakasaka
AIプログラミング雑キャッチアップ
yuheinakasaka
25
8.4k
Rubyに(ちょっと)コントリビュートできた話
yuheinakasaka
1
260
Other Decks in Technology
See All in Technology
Mambaで物体検出 完全に理解した
shirarei24
2
170
AIに全任せしないコーディングとマネジメント思考
kikuchikakeru
0
370
【CEDEC2025】ブランド力アップのためのコンテンツマーケティング~ゲーム会社における情報資産の活かし方~
cygames
PRO
0
200
帳票構造化タスクにおけるLLMファインチューニングの性能評価
yosukeyoshida
1
210
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
400
20250728 MCP, A2A and Multi-Agents in the future
yoshidashingo
1
180
反脆弱性(アンチフラジャイル)とデータ基盤構築
cuebic9bic
2
130
2025-07-31: GitHub Copilot Agent mode at Vibe Coding Cafe (15min)
chomado
2
300
【CEDEC2025】現場を理解して実現!ゲーム開発を効率化するWebサービスの開発と、利用促進のための継続的な改善
cygames
PRO
0
640
「手を動かした者だけが世界を変える」ソフトウェア開発だけではない開発者人生
onishi
15
8k
AI駆動開発 with MixLeap Study【大阪支部 #3】
lycorptech_jp
PRO
0
300
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
610
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.4k
Music & Morning Musume
bryan
46
6.7k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Adopting Sorbet at Scale
ufuk
77
9.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
A better future with KSS
kneath
238
17k
Rails Girls Zürich Keynote
gr2m
95
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Transcript
LLMでコードレビューする際の自分用環境を整える LLMでコードレビューする際の自分用環境を整える © 2025 1
目次 1. LLMによるコードレビューの現状 2. 現状のLLMコードレビューの課題 3. 自分用コードレビュー環境の構築 4. コードレビューガイドラインの作成 5.
レビュアー人格の作成 6. レビューの実行方法 7. 活用方法と展望 8. まとめ LLMでコードレビューする際の自分用環境を整える © 2025 2
LLMによるコードレビューの現状 (1/2) 既存のサービス CodeRabbit PRに対する自動コードレビュー GitHub連携 GitHub Copilot レビュアーとしてbotが参加する機能 GitHub公式サービス
LLMでコードレビューする際の自分用環境を整える © 2025 3
LLMによるコードレビューの現状 (2/2) 自前での実装例 GitHub Actionsを使ったコードレビュー CIパイプラインに組み込み NTTの事例 検証〜実践段階手前まで進んでいる状況 多くの企業・個人が試行錯誤中 実用レベルに近づきつつある
LLMでコードレビューする際の自分用環境を整える © 2025 4
現状のLLMコードレビューの課題 現状のレビューの限界 PR単位での限定的なレビュー 言語やフレームワーク一般の観点が中心 単一プロダクトに閉じた観点 人間のレビューとの差 業務知識の欠如 関連プロダクト全体を通じたシステム観点の不足 プロダクションレベルのレビュー品質に達していない LLMでコードレビューする際の自分用環境を整える
© 2025 5
自分用コードレビュー環境の構築 目的 プロダクションレベルのレビューを可能な限り実現 事前に指摘されそうな部分を先回りして修正 レビュアーへのレビュー負荷を軽減 人間のレビュアーに出す前のレビューLinterとして機能 成果物 GitHub: YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える
© 2025 6
コードレビューガイドラインの作成 (1/2) 参考にした資料 書籍 Code Complete プリンシプル オブ プログラミング ドキュメント
Google Engineering Practices Documentation Thoughtbotのコードレビューガイド 技術書 コードレビューで学ぶRubyOnRails LLMでコードレビューする際の自分用環境を整える © 2025 7
コードレビューガイドラインの作成 (2/2) 作成したガイドライン 一般的なコードレビュー観点 言語共通のベストプラクティス コード品質の一般的な基準 Railsアプリ特有のコードレビュー観点 Rails固有のパターンとアンチパターン フレームワーク特有の注意点 LLMでコードレビューする際の自分用環境を整える
© 2025 8
レビュアー人格の作成 理想のレビュアー像 疑い深く意地悪なくらいに隅々まで見る 重箱の隅を突いてくるような口うるさいレビュアー AIなので感情的に何も感じない(メリット) レビュアー人格の特徴 レビュアー人格定義 良い点や適切なコードにはコメントを残さない 修正すべき点や気になる点には必ずコメントを残す 質問や指摘事項をズバズバ言う
LLMでコードレビューする際の自分用環境を整える © 2025 9
レビューの実行方法 (1/2) 実行環境の選択 手元のCursorやClineで実行 ガイドラインやプロンプトを柔軟に修正可能 自分のPRの事前チェック用途 他人のPRへのレビュー負荷と漏れを減らす用途 PRの取得 GitHub APIを使用
Rubyスクリプトでの実装 # 例: ruby init_pr_content.rb https://github.com/owner/repo/pull/123 ruby init_pr_content.rb <PR URL> LLMでコードレビューする際の自分用環境を整える © 2025 10
レビューの実行方法 (2/2) プロンプト構成 コードレビューガイドラインの参照 対象リポジトリの指定(複数指定可能) PRの内容の参照 レビュアー人格の指定 レビュー結果の出力形式 重要なポイント 関連プロダクトのリポジトリも参照可能
業務知識や関連プロダクト全体を考慮したレビューが可能 単一プロダクトの枠を超えたシステム観点でのレビュー LLMでコードレビューする際の自分用環境を整える © 2025 11
活用方法と展望 チームでの活用 チームに合わせたガイドラインの改変 リポジトリごとに .review/ ディレクトリで管理 レビュー前LLMレビューのプロンプトをチーム共有 自動化の可能性 GitHub ActionsなどでCIに組み込み
botによるコメント自動化 レビュアー人格の調整(細かすぎるコメントは邪魔になる可能性) LLMでコードレビューする際の自分用環境を整える © 2025 12
まとめ LLMによるコードレビューは進化中だが、まだ人間レベルには達していない 自分用のコードレビュー環境を整備することで、より高品質なレビューが可能 コードレビューガイドラインとレビュアー人格の定義が重要 手元での実行とカスタマイズが柔軟性を高める チームでの活用や自動化も視野に入れた発展が可能 リポジトリ https://github.com/YuheiNakasaka/llm-code-reviewer/ LLMでコードレビューする際の自分用環境を整える ©
2025 13
参考リンク CodeRabbit GitHub Copilot NTTのGemini CICDコードレビュー事例 Google Engineering Practices Documentation
Thoughtbotのコードレビューガイド コードレビューで学ぶRubyOnRails YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える © 2025 14