Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMでコードレビューする際の自分用環境を整える
Search
YuheiNakasaka
May 09, 2025
Technology
0
190
LLMでコードレビューする際の自分用環境を整える
この記事を社内勉強会用に雑にまとめたやつ
https://zenn.dev/razokulover/articles/058fede74dbbe0
YuheiNakasaka
May 09, 2025
Tweet
Share
More Decks by YuheiNakasaka
See All by YuheiNakasaka
AIプログラミング雑キャッチアップ
yuheinakasaka
25
8.9k
Rubyに(ちょっと)コントリビュートできた話
yuheinakasaka
1
270
Other Decks in Technology
See All in Technology
Digital omtanke på Internetdagarna 2025
axbom
PRO
0
130
"なるべくスケジューリングしない" を実現する "PreferNoSchedule" taint
superbrothers
0
110
AI エージェントを評価するための温故知新と Spec Driven Evaluation
icoxfog417
PRO
2
850
Bedrock のコスト監視設計
fohte
2
230
AS59105におけるFreeBSD EtherIPの運用と課題
x86taka
0
280
信頼性が求められる業務のAIAgentのアーキテクチャ設計の勘所と課題
miyatakoji
0
180
Datadog LLM Observabilityで実現するLLMOps実践事例 / practical-llm-observability-with-datadog
k6s4i53rx
0
180
クラウドネイティブ時代の 開発プロセス再設計 〜速さと品質を両立するには〜
moritamasami
0
120
AI自動ペンテスト「RapidPen」ご紹介資料
laysakura
0
110
Digitization部 紹介資料
sansan33
PRO
1
6k
現地速報!Microsoft Ignite 2025 M365 Copilotアップデートレポート
kasada
2
1.8k
Greenは本当にGreenか? - B/GデプロイとAPI自動テストで安心デプロイ
kaz29
1
130
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Transcript
LLMでコードレビューする際の自分用環境を整える LLMでコードレビューする際の自分用環境を整える © 2025 1
目次 1. LLMによるコードレビューの現状 2. 現状のLLMコードレビューの課題 3. 自分用コードレビュー環境の構築 4. コードレビューガイドラインの作成 5.
レビュアー人格の作成 6. レビューの実行方法 7. 活用方法と展望 8. まとめ LLMでコードレビューする際の自分用環境を整える © 2025 2
LLMによるコードレビューの現状 (1/2) 既存のサービス CodeRabbit PRに対する自動コードレビュー GitHub連携 GitHub Copilot レビュアーとしてbotが参加する機能 GitHub公式サービス
LLMでコードレビューする際の自分用環境を整える © 2025 3
LLMによるコードレビューの現状 (2/2) 自前での実装例 GitHub Actionsを使ったコードレビュー CIパイプラインに組み込み NTTの事例 検証〜実践段階手前まで進んでいる状況 多くの企業・個人が試行錯誤中 実用レベルに近づきつつある
LLMでコードレビューする際の自分用環境を整える © 2025 4
現状のLLMコードレビューの課題 現状のレビューの限界 PR単位での限定的なレビュー 言語やフレームワーク一般の観点が中心 単一プロダクトに閉じた観点 人間のレビューとの差 業務知識の欠如 関連プロダクト全体を通じたシステム観点の不足 プロダクションレベルのレビュー品質に達していない LLMでコードレビューする際の自分用環境を整える
© 2025 5
自分用コードレビュー環境の構築 目的 プロダクションレベルのレビューを可能な限り実現 事前に指摘されそうな部分を先回りして修正 レビュアーへのレビュー負荷を軽減 人間のレビュアーに出す前のレビューLinterとして機能 成果物 GitHub: YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える
© 2025 6
コードレビューガイドラインの作成 (1/2) 参考にした資料 書籍 Code Complete プリンシプル オブ プログラミング ドキュメント
Google Engineering Practices Documentation Thoughtbotのコードレビューガイド 技術書 コードレビューで学ぶRubyOnRails LLMでコードレビューする際の自分用環境を整える © 2025 7
コードレビューガイドラインの作成 (2/2) 作成したガイドライン 一般的なコードレビュー観点 言語共通のベストプラクティス コード品質の一般的な基準 Railsアプリ特有のコードレビュー観点 Rails固有のパターンとアンチパターン フレームワーク特有の注意点 LLMでコードレビューする際の自分用環境を整える
© 2025 8
レビュアー人格の作成 理想のレビュアー像 疑い深く意地悪なくらいに隅々まで見る 重箱の隅を突いてくるような口うるさいレビュアー AIなので感情的に何も感じない(メリット) レビュアー人格の特徴 レビュアー人格定義 良い点や適切なコードにはコメントを残さない 修正すべき点や気になる点には必ずコメントを残す 質問や指摘事項をズバズバ言う
LLMでコードレビューする際の自分用環境を整える © 2025 9
レビューの実行方法 (1/2) 実行環境の選択 手元のCursorやClineで実行 ガイドラインやプロンプトを柔軟に修正可能 自分のPRの事前チェック用途 他人のPRへのレビュー負荷と漏れを減らす用途 PRの取得 GitHub APIを使用
Rubyスクリプトでの実装 # 例: ruby init_pr_content.rb https://github.com/owner/repo/pull/123 ruby init_pr_content.rb <PR URL> LLMでコードレビューする際の自分用環境を整える © 2025 10
レビューの実行方法 (2/2) プロンプト構成 コードレビューガイドラインの参照 対象リポジトリの指定(複数指定可能) PRの内容の参照 レビュアー人格の指定 レビュー結果の出力形式 重要なポイント 関連プロダクトのリポジトリも参照可能
業務知識や関連プロダクト全体を考慮したレビューが可能 単一プロダクトの枠を超えたシステム観点でのレビュー LLMでコードレビューする際の自分用環境を整える © 2025 11
活用方法と展望 チームでの活用 チームに合わせたガイドラインの改変 リポジトリごとに .review/ ディレクトリで管理 レビュー前LLMレビューのプロンプトをチーム共有 自動化の可能性 GitHub ActionsなどでCIに組み込み
botによるコメント自動化 レビュアー人格の調整(細かすぎるコメントは邪魔になる可能性) LLMでコードレビューする際の自分用環境を整える © 2025 12
まとめ LLMによるコードレビューは進化中だが、まだ人間レベルには達していない 自分用のコードレビュー環境を整備することで、より高品質なレビューが可能 コードレビューガイドラインとレビュアー人格の定義が重要 手元での実行とカスタマイズが柔軟性を高める チームでの活用や自動化も視野に入れた発展が可能 リポジトリ https://github.com/YuheiNakasaka/llm-code-reviewer/ LLMでコードレビューする際の自分用環境を整える ©
2025 13
参考リンク CodeRabbit GitHub Copilot NTTのGemini CICDコードレビュー事例 Google Engineering Practices Documentation
Thoughtbotのコードレビューガイド コードレビューで学ぶRubyOnRails YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える © 2025 14