Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMでコードレビューする際の自分用環境を整える
Search
YuheiNakasaka
May 09, 2025
Technology
0
220
LLMでコードレビューする際の自分用環境を整える
この記事を社内勉強会用に雑にまとめたやつ
https://zenn.dev/razokulover/articles/058fede74dbbe0
YuheiNakasaka
May 09, 2025
Tweet
Share
More Decks by YuheiNakasaka
See All by YuheiNakasaka
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
7
1.4k
AIプログラミング雑キャッチアップ
yuheinakasaka
25
9k
Rubyに(ちょっと)コントリビュートできた話
yuheinakasaka
1
290
Other Decks in Technology
See All in Technology
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
320
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
630
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
650
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
820
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
830
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
110
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
15
4.9k
AI with TiDD
shiraji
1
340
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
150
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
From π to Pie charts
rasagy
0
100
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
100
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
HDC tutorial
michielstock
1
300
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
84
Measuring & Analyzing Core Web Vitals
bluesmoon
9
720
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
45
Transcript
LLMでコードレビューする際の自分用環境を整える LLMでコードレビューする際の自分用環境を整える © 2025 1
目次 1. LLMによるコードレビューの現状 2. 現状のLLMコードレビューの課題 3. 自分用コードレビュー環境の構築 4. コードレビューガイドラインの作成 5.
レビュアー人格の作成 6. レビューの実行方法 7. 活用方法と展望 8. まとめ LLMでコードレビューする際の自分用環境を整える © 2025 2
LLMによるコードレビューの現状 (1/2) 既存のサービス CodeRabbit PRに対する自動コードレビュー GitHub連携 GitHub Copilot レビュアーとしてbotが参加する機能 GitHub公式サービス
LLMでコードレビューする際の自分用環境を整える © 2025 3
LLMによるコードレビューの現状 (2/2) 自前での実装例 GitHub Actionsを使ったコードレビュー CIパイプラインに組み込み NTTの事例 検証〜実践段階手前まで進んでいる状況 多くの企業・個人が試行錯誤中 実用レベルに近づきつつある
LLMでコードレビューする際の自分用環境を整える © 2025 4
現状のLLMコードレビューの課題 現状のレビューの限界 PR単位での限定的なレビュー 言語やフレームワーク一般の観点が中心 単一プロダクトに閉じた観点 人間のレビューとの差 業務知識の欠如 関連プロダクト全体を通じたシステム観点の不足 プロダクションレベルのレビュー品質に達していない LLMでコードレビューする際の自分用環境を整える
© 2025 5
自分用コードレビュー環境の構築 目的 プロダクションレベルのレビューを可能な限り実現 事前に指摘されそうな部分を先回りして修正 レビュアーへのレビュー負荷を軽減 人間のレビュアーに出す前のレビューLinterとして機能 成果物 GitHub: YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える
© 2025 6
コードレビューガイドラインの作成 (1/2) 参考にした資料 書籍 Code Complete プリンシプル オブ プログラミング ドキュメント
Google Engineering Practices Documentation Thoughtbotのコードレビューガイド 技術書 コードレビューで学ぶRubyOnRails LLMでコードレビューする際の自分用環境を整える © 2025 7
コードレビューガイドラインの作成 (2/2) 作成したガイドライン 一般的なコードレビュー観点 言語共通のベストプラクティス コード品質の一般的な基準 Railsアプリ特有のコードレビュー観点 Rails固有のパターンとアンチパターン フレームワーク特有の注意点 LLMでコードレビューする際の自分用環境を整える
© 2025 8
レビュアー人格の作成 理想のレビュアー像 疑い深く意地悪なくらいに隅々まで見る 重箱の隅を突いてくるような口うるさいレビュアー AIなので感情的に何も感じない(メリット) レビュアー人格の特徴 レビュアー人格定義 良い点や適切なコードにはコメントを残さない 修正すべき点や気になる点には必ずコメントを残す 質問や指摘事項をズバズバ言う
LLMでコードレビューする際の自分用環境を整える © 2025 9
レビューの実行方法 (1/2) 実行環境の選択 手元のCursorやClineで実行 ガイドラインやプロンプトを柔軟に修正可能 自分のPRの事前チェック用途 他人のPRへのレビュー負荷と漏れを減らす用途 PRの取得 GitHub APIを使用
Rubyスクリプトでの実装 # 例: ruby init_pr_content.rb https://github.com/owner/repo/pull/123 ruby init_pr_content.rb <PR URL> LLMでコードレビューする際の自分用環境を整える © 2025 10
レビューの実行方法 (2/2) プロンプト構成 コードレビューガイドラインの参照 対象リポジトリの指定(複数指定可能) PRの内容の参照 レビュアー人格の指定 レビュー結果の出力形式 重要なポイント 関連プロダクトのリポジトリも参照可能
業務知識や関連プロダクト全体を考慮したレビューが可能 単一プロダクトの枠を超えたシステム観点でのレビュー LLMでコードレビューする際の自分用環境を整える © 2025 11
活用方法と展望 チームでの活用 チームに合わせたガイドラインの改変 リポジトリごとに .review/ ディレクトリで管理 レビュー前LLMレビューのプロンプトをチーム共有 自動化の可能性 GitHub ActionsなどでCIに組み込み
botによるコメント自動化 レビュアー人格の調整(細かすぎるコメントは邪魔になる可能性) LLMでコードレビューする際の自分用環境を整える © 2025 12
まとめ LLMによるコードレビューは進化中だが、まだ人間レベルには達していない 自分用のコードレビュー環境を整備することで、より高品質なレビューが可能 コードレビューガイドラインとレビュアー人格の定義が重要 手元での実行とカスタマイズが柔軟性を高める チームでの活用や自動化も視野に入れた発展が可能 リポジトリ https://github.com/YuheiNakasaka/llm-code-reviewer/ LLMでコードレビューする際の自分用環境を整える ©
2025 13
参考リンク CodeRabbit GitHub Copilot NTTのGemini CICDコードレビュー事例 Google Engineering Practices Documentation
Thoughtbotのコードレビューガイド コードレビューで学ぶRubyOnRails YuheiNakasaka/llm-code-reviewer LLMでコードレビューする際の自分用環境を整える © 2025 14