Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
Search
oshima
December 11, 2020
Technology
0
300
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
oshima
December 11, 2020
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
430
メルカリのLLMを使ったサービス開発の進め方
yujioshima
0
260
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.5k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.2k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
200
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.2k
Other Decks in Technology
See All in Technology
Amazon VPC Lattice 最新アップデート紹介 - PrivateLink も似たようなアップデートあったけど違いとは
bigmuramura
0
200
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
160
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
0
200
re:Invent 2024 Innovation Talks(NET201)で語られた大切なこと
shotashiratori
0
310
複雑性の高いオブジェクト編集に向き合う: プラガブルなReactフォーム設計
righttouch
PRO
0
120
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
540
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
220
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
210
DevFest 2024 Incheon / Songdo - Compose UI 조합 심화
wisemuji
0
110
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
160
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Fireside Chat
paigeccino
34
3.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Agile that works and the tools we love
rasmusluckow
328
21k
BBQ
matthewcrist
85
9.4k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Navigating Team Friction
lara
183
15k
A Philosophy of Restraint
colly
203
16k
Practical Orchestrator
shlominoach
186
10k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Transcript
メルカリにおけるEdgeAIを用いた 新たなUXの開発 CCSE2020 大嶋悠司
自己紹介 大嶋 悠司 2019/12 ~ Tech Lead of EdgeAI team
in Mercari • EgeAI機能開発/研究・モデル作成・プラットフォーム構築 • OSS活動: ◦ Kubeflow katib (owner) ◦ Docker infrakit (maintainer) • Github: YujiOshima • Twitter: @overs_5121
発表の流れ • EdgeAIとは・EdgeAIチームの取り組み • 機能開発(要件定義) • 機能開発(POC開発) • 機能開発(技術課題洗い出し)
EdgeAIとは MLモデルの推論を端末上で行う 1 sec 〜 〜 50ms インタラクティブなUXを実現
EdgeAIチームの取り組み 画像分類: アイテムを撮影すると即座にカテゴリを推定 MLの推論を端末上で行うことでインタラクティブなUXを実現 リリース済み
EdgeAIチームの取り組み 自然言語(IME): 入力に基づき動的に表示を調整 トライアル中 MLの推論を端末上で行うことでインタラクティブなUXを実現
EdgeAIチームの取り組み 物体検出・追跡: カメラに映る物体をリアルタイムに追跡 この機能の開発を例に 開発中 MLの推論を端末上で行うことでインタラクティブなUXを実現
開発の流れ 要件定義 社内ユーザテスト POC作成 技術課題洗い出し
要件定義
10 売れるかチェック アイテムを撮影すると • 売れている価格平均 • 売り切れ率 がわかる UXを改善し利用率を上げたい
11 利用率を向上のために 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 売れるかチェックのステップを分解
12 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 ここでやめてしまうお客様が多い 写真の撮影は想定以上にハードルが高いのでは?
写真撮影のステップをなくせないか
13 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
14 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
15 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
16 POC作成+ユーザテスト
17 領域検出を端末上で行う
18 • 物体検出の精度は十分 • タップすればいいことが伝わりにくい 社内ユーザテスト 物体検出とともに売れやすい価格などの 情報提示もリアルタイムに行いたい
19 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
20 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面
21 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 画像転送に時間が かかる
22 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
23 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
転送量を大幅に軽減
24
25 技術課題洗い出し
26 リリースのために解決すべき課題 • モデルサイズと精度のトレードオフ • 端末の熱・電池消費の問題
27 モデルサイズと精度のバランス アーキテクチャ Precision/mAP Recall/AR@100 モデルサイズ SSD-mobilenetv2 0.56 0.66 18MB
SSDLite-mobilenetv2 0.56 0.67 12MB SSDLite-mobilenetv3-small 0.38 0.5 3.7MB SSDLite-mobiledet 0.59 0.71 13.8MB モデルの精度だけを追求することはできない 実行デバイスで推論速度も違う
28 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤
29 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤 精度・モデルサイズや 実デバイス上の推論速度を可視化
30 デバイスごとのベンチマーク iPhone 11 iPhone 8 CoreML GPU CPU XNNPack
31 端末の熱・電池消費の問題 30 FPS ・・・
32 端末の熱・電池消費の問題 参考: Mediapipeを活用したストリーミング推論の事例紹介-カメラをかざして家の中から売れるアイテムを探そう 端末上での処理をパイプラインで表現 • 並列化 • 重い処理の計算頻度を下げる
33 端末の熱・電池消費の問題
34 まとめ • どこまでを端末上で行うか,どれくらいの精度が必要か ◦ ユーザテストとPOCを繰り返す • 端末上での処理能力や熱の問題 ◦ MLの精度の追求は難しい
◦ サイズ検証や実機ベンチマークを自動化 ◦ UXを損なわないレベルで計算コストを下げるチューニング 課題 • リリース後のログの設計 • モデルの更新基盤