Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
Search
oshima
December 11, 2020
Technology
0
310
CCSE2020 メルカリにおけるEdgeAIを用いた 新たなUXの開発
oshima
December 11, 2020
Tweet
Share
More Decks by oshima
See All by oshima
CCSE2023 大規模言語モデルのZero-shot Learningを用いたデータ構築と開発への応用
yujioshima
2
440
メルカリのLLMを使ったサービス開発の進め方
yujioshima
0
260
生成系AI/LLM に関する 注目アップデート ~MS Build 2023 編~
yujioshima
5
2.6k
MLOps勉強会 そのEdgeAIはUXを 改善できるか
yujioshima
1
1.2k
Mercar Gears MercariにおけるEdgeAIについて
yujioshima
0
210
MLSE モバイル向け機械学習モデル管理基盤
yujioshima
2
3.2k
Other Decks in Technology
See All in Technology
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.5k
Developer Summit 2025 [14-D-1] Yuki Hattori
yuhattor
19
6.2k
The Future of SEO: The Impact of AI on Search
badams
0
190
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
710
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
330
現場で役立つAPIデザイン
nagix
33
12k
2.5Dモデルのすべて
yu4u
2
860
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
17
6.7k
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.8k
データの品質が低いと何が困るのか
kzykmyzw
6
1.1k
Platform Engineeringは自由のめまい
nwiizo
4
2.1k
Featured
See All Featured
Site-Speed That Sticks
csswizardry
4
380
Code Reviewing Like a Champion
maltzj
521
39k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Typedesign – Prime Four
hannesfritz
40
2.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
How to train your dragon (web standard)
notwaldorf
91
5.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Docker and Python
trallard
44
3.3k
Transcript
メルカリにおけるEdgeAIを用いた 新たなUXの開発 CCSE2020 大嶋悠司
自己紹介 大嶋 悠司 2019/12 ~ Tech Lead of EdgeAI team
in Mercari • EgeAI機能開発/研究・モデル作成・プラットフォーム構築 • OSS活動: ◦ Kubeflow katib (owner) ◦ Docker infrakit (maintainer) • Github: YujiOshima • Twitter: @overs_5121
発表の流れ • EdgeAIとは・EdgeAIチームの取り組み • 機能開発(要件定義) • 機能開発(POC開発) • 機能開発(技術課題洗い出し)
EdgeAIとは MLモデルの推論を端末上で行う 1 sec 〜 〜 50ms インタラクティブなUXを実現
EdgeAIチームの取り組み 画像分類: アイテムを撮影すると即座にカテゴリを推定 MLの推論を端末上で行うことでインタラクティブなUXを実現 リリース済み
EdgeAIチームの取り組み 自然言語(IME): 入力に基づき動的に表示を調整 トライアル中 MLの推論を端末上で行うことでインタラクティブなUXを実現
EdgeAIチームの取り組み 物体検出・追跡: カメラに映る物体をリアルタイムに追跡 この機能の開発を例に 開発中 MLの推論を端末上で行うことでインタラクティブなUXを実現
開発の流れ 要件定義 社内ユーザテスト POC作成 技術課題洗い出し
要件定義
10 売れるかチェック アイテムを撮影すると • 売れている価格平均 • 売り切れ率 がわかる UXを改善し利用率を上げたい
11 利用率を向上のために 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 売れるかチェックのステップを分解
12 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面 ここでやめてしまうお客様が多い 写真の撮影は想定以上にハードルが高いのでは?
写真撮影のステップをなくせないか
13 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
14 ボトルネックの調査 結果表示 タップ 領域検出 類似商品検索 写真撮影 カメラ画面
15 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
16 POC作成+ユーザテスト
17 領域検出を端末上で行う
18 • 物体検出の精度は十分 • タップすればいいことが伝わりにくい 社内ユーザテスト 物体検出とともに売れやすい価格などの 情報提示もリアルタイムに行いたい
19 領域検出を端末上で行う 結果表示 タップ 類似商品検索 領域検出 カメラ画面
20 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面
21 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 画像転送に時間が かかる
22 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
23 特徴量抽出 情報提示までリアルタイムに 結果表示 類似商品検索 領域検出 カメラ画面 011010 010101 011...
転送量を大幅に軽減
24
25 技術課題洗い出し
26 リリースのために解決すべき課題 • モデルサイズと精度のトレードオフ • 端末の熱・電池消費の問題
27 モデルサイズと精度のバランス アーキテクチャ Precision/mAP Recall/AR@100 モデルサイズ SSD-mobilenetv2 0.56 0.66 18MB
SSDLite-mobilenetv2 0.56 0.67 12MB SSDLite-mobilenetv3-small 0.38 0.5 3.7MB SSDLite-mobiledet 0.59 0.71 13.8MB モデルの精度だけを追求することはできない 実行デバイスで推論速度も違う
28 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤
29 Edgeモデル検証用プラットフォーム モデル学習 参考:MLSE モバイル向け機械学習モデル管理基盤 精度・モデルサイズや 実デバイス上の推論速度を可視化
30 デバイスごとのベンチマーク iPhone 11 iPhone 8 CoreML GPU CPU XNNPack
31 端末の熱・電池消費の問題 30 FPS ・・・
32 端末の熱・電池消費の問題 参考: Mediapipeを活用したストリーミング推論の事例紹介-カメラをかざして家の中から売れるアイテムを探そう 端末上での処理をパイプラインで表現 • 並列化 • 重い処理の計算頻度を下げる
33 端末の熱・電池消費の問題
34 まとめ • どこまでを端末上で行うか,どれくらいの精度が必要か ◦ ユーザテストとPOCを繰り返す • 端末上での処理能力や熱の問題 ◦ MLの精度の追求は難しい
◦ サイズ検証や実機ベンチマークを自動化 ◦ UXを損なわないレベルで計算コストを下げるチューニング 課題 • リリース後のログの設計 • モデルの更新基盤