Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
検索の仕組みを知ってみよう~入門編~
Search
yuki
January 28, 2023
Technology
0
180
検索の仕組みを知ってみよう~入門編~
yuki
January 28, 2023
Tweet
Share
Other Decks in Technology
See All in Technology
2つのフロントエンドと状態管理
mixi_engineers
PRO
3
110
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
230
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
320
roppongirb_20250911
igaiga
1
240
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.5k
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
10k
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
1
150
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.3k
S3アクセス制御の設計ポイント
tommy0124
3
200
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.8k
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.1k
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
320
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Gamification - CAS2011
davidbonilla
81
5.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Designing for humans not robots
tammielis
253
25k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Music & Morning Musume
bryan
46
6.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Optimizing for Happiness
mojombo
379
70k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Transcript
検索の仕組みを知ってみよう ~入門編~ 2020
自己紹介 名前: yuki (twitter: @yuki_pnn) しがないエンジニア 趣味: たまに同人漫画のシナリオ書き バドミントン
検索使ってますか?
ブログ記事の一覧から 「特定の単語」が含まれているものを検索したい SNSで過去の投稿一覧から 「特定の単語」が含まれている投稿を検索したい 例えば… などなど
検索ってどう実装されているか知っていますか?
注意点 ・ここから先の話は説明のために簡略化をしています ・知っている人は生暖かく見守っていてください ・間違った説明をしているかもしれません 何か指摘があれば登壇終了後に指摘をお願いします💦
検索ってどんなロジックで動いているの? 知りたいですよね…? というわけで検索のアルゴリズムやデータ構造のお話です 全文検索のお話をします
検索でよく使うOSS elasticsearch ・多分検索エンジンの中で一番有名 ・いろんなところで使われている ・分散型の検索エンジンで大規模サービスにも耐えれる solrなんかも検索エンジンとして有名
実はコア部分に同じOSSが使われています 「Apache Lucene」(アパッチ ルシーン) ・OSSの全文検索エンジン/ライブラリ(Java) ・検索に必要な機能が色々詰まっているやつ ・大体これを使って検索エンジン/サーバを実装している Apache Projectの守備範囲広い…
今日は以下の機能について話していきます ・全文検索を支えるデータ構造 ・全文検索でのスコアリング方法 ・「もしかして◦◦?」のサジェストを実現するには?
シンプルな検索を考えてみる クエリ:「晴れ」 文書1:「今日の天気は雨」 文書2:「明日の天気は晴れ」 文書3:「明後日の天気は曇り」 これくらいなら文書全てを総当たりしてもよさそう
じゃあ文書の数が100万件あった場合は?
高速に単語を検索するアルゴリズムを使う? いい感じに検索しやすいデータ構造に変える?
「明日の天気は晴れ」 「明日」「天気」「晴れ」 単語分割(形態素解析 + ストップワード除去) ① 全文検索を支えるデータ構造: 転置インデックス 単語から文書を引けるようにする 今日 :文書1
明日 :文書2 明後日 :文書3 天気 :文書1, 文書2, 文書3 晴れ :文書2 曇り :文書3 雨 :文書1 ② これで単語から文章を探すのが簡単になる
文書は探せるけど表示する順番はどう決めるか? いい感じのスコアを決めたい
単純に考えると 長い文章の一部だとあんまり重要じゃなさそう? たまに出現する単語だとそこまで嬉しくないかも? 文章の主題に調べたい単語があれば嬉しいかも
計算式 tf-idf(単語i, 文章j) = tf(単語i, 文章j) ・idf(単語i) 全文検索でのスコアリング方法: TF-IDF 特定の文章内の単語がどれくらい重要か示す値
文章j内での単語iの出現回数 文章jのすべての単語の出現回数の和 tf(単語i, 文章j) = idf(単語i, 文章j) = 全ての文章数 単語iが出現する文章数 log ( )
転置インデックス (調べたい対象の文章) tf-idf Query 転置インデックス(データ構造)と tf-idf(スコアリング)を組み合わせて高速な検索を実現 実際はtf-idfを拡張したBM25を使ったりクエリをもう少し解析したりする
単純な検索はそれっぽくできそうだけど… こんな感じでいい感じに近い単語をサジェストしたい
その前に一つ重要な考え方(技術?)を紹介 nGram bi-gram tri-gram 等…
例えば「国土交通省」のような単語があった場合 bi-gram 「国土」「土交」「交通」「通省」 tri-gram 「国土交」「土交通」「交通省」 のように文字数で分割する
すごくざっくりな「もしかして検索」の実装方針 n-gramでクエリを分割する 転置インデックスに対してn-gramが含まれる単語を検索する ヒットした単語とクエリの文字列編集距離を計算しスコアとする スコアが最も高い単語を「もしかして?」と表示する 1. 2. 3. 4. 他にも細かいところはあるけど大体こんな感じ(なはず)
編集距離って? 単語iを別の単語jに変形するのに必要な最小手順数 例 「ハックバー」 「テックバー」 編集距離: 2 「スコップ」 「コップ」 編集距離:
1 Levenshtein Distanceなんかが有名 実際はjaro-winkler Distanceなんかが使われる
普段よく使う検索機能 実際に中の処理を見てみると奥が深い! 今回説明をしたのもかなり簡略化したもの…
興味があればいろいろと調べてみてください! 検索だけでなく身近にある機能も仕組みを 調べると面白いものが多いはず
まとめ ・(全文)検索を実現するために「転置インデックス」なる構造がある ・検索のスコアを決めるために「tf-idf(BM25)」などのアルゴリズムがある ・n-gramや編集距離を使って「もしかして検索」を実現d