Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI Coding Agent Enablement - エージェントを自走させよう
Search
Yuku Kotani
April 08, 2025
Programming
14
6.6k
AI Coding Agent Enablement - エージェントを自走させよう
AI Coding Meetup #1
https://layerx.connpass.com/event/347094/
https://youtu.be/Q783txBWcOM?t=1339
Yuku Kotani
April 08, 2025
Tweet
Share
More Decks by Yuku Kotani
See All by Yuku Kotani
Expoによるアプリ開発の現在地とReact Server Componentsが切り開く未来
yukukotani
3
420
React 19でお手軽にCSS-in-JSを自作する
yukukotani
5
750
僕が思い描くTypeScriptの未来を勝手に先取りする
yukukotani
11
3.2k
Web技術を駆使してユーザーの画面を「録画」する
yukukotani
14
7.5k
Capacitor製のWebViewアプリからReact Native製のハイブリッドアプリへ
yukukotani
5
1.5k
Real World Type Puzzle and Code Generation
yukukotani
4
920
Kuma UI が提唱する Hybrid Approach CSS-in-JS の仕組み
yukukotani
2
560
GraphQLスキーマ設計の勘所
yukukotani
42
18k
既存Webサービスのモバイルアプリ版を 1週間でリリースし、進化させてきた話
yukukotani
0
780
Other Decks in Programming
See All in Programming
オープンソースコントリビュート入門
_katsuma
0
130
ぽちぽち選択するだけでOSSを読めるVSCode拡張機能
ymbigo
14
6.3k
fieldalignmentから見るGoの構造体
kuro_kurorrr
0
140
Storybookの情報をMCPサーバー化する
shota_tech
3
1.1k
ASP.NETアプリケーションのモダナイゼーションについて
tomokusaba
0
260
プロフェッショナルとしての成長「問題の深掘り」が導く真のスキルアップ / issue-analysis-and-skill-up
minodriven
8
2k
eBPF超入門「o11yに使える」とは (20250424_eBPF_o11y)
thousanda
1
120
Rubyの!メソッドをちゃんと理解する
alstrocrack
1
310
GitHub Copilot for Azureを使い倒したい
ymd65536
1
330
データと事例で振り返るDevin導入の"リアル" / The Realities of Devin Reflected in Data and Case Studies
rkaga
3
1.9k
リアーキテクチャの現場で向き合う 既存サービスの読み解きと設計判断
ymiyamu
0
100
エンジニア向けCursor勉強会 @ SmartHR
yukisnow1823
3
12k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
120
52k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Practical Orchestrator
shlominoach
187
11k
How to Ace a Technical Interview
jacobian
276
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
600
Building Applications with DynamoDB
mza
94
6.4k
A Tale of Four Properties
chriscoyier
159
23k
4 Signs Your Business is Dying
shpigford
183
22k
A better future with KSS
kneath
239
17k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
AI Coding Agent Enablement ~エージェントを させよう~ 自走 @yukukotani 2025/04/08 -
AI Coding Meetup #1
自己紹介 Yuku Kotani VP of Technology @ Ubie, Inc. @yukukotani
@yukukotani
今日の趣旨 コーディングエージェントをイネーブリングして自走させたい! ベースとなる考え方と、具体的なアプローチを紹介します
自走ってなんだろう?
自走 = Human-in-the-Loop をなるべくやらない Copilot時代はスニペット単位でHuman-in-the-Loopを回していた Agent時代にはできるだけ自律的に判断させて1ループの作業単位を大きくしたい
auto-run (Yolo) mode で自走完了ではない auto-run は検証をスキップしてくれる機能であって、 本質的に必要な検証を行ってくれる機能ではない
デフォルトの解空間は大きすぎる デフォルトでは「文法に適合するコード(=パーサー検証)」程度の制約しかなく、 極めて広い解空間でエージェントが動く → 精度が低い 解空間 生成対象の言語のSyntax全体
基本方針:可能な限り解空間を絞る 会社・プロジェクト固有の解空間は本来もっと狭いはず 解空間 会社・プロジェクト固有の アーキテクチャ・規約・デザインなど
どうやって?
(1) 機械的検査
機械的検査で定義した解空間に押し戻す LLMの出力を機械的に受け入れ検査し、NGの場合はフィードバックする 解空間 機械的にフィードバックを与えて 解空間へ押し戻す
古典的な静的解析・自動テスト エージェントにLinterや型チェック、自動テストを実行させ その結果をもとに自律改善して、passするまで勝手にルーr まずは既存Linterを使ってコーディング規約的な部分を整備するのが簡G その上でプロジェクト固有の具体的なLintルールが伸び9
Ubieの~ モジュラモノリスのモジュールを超えたDBアクセスを禁$ 特定ファイル以外でのLocalStorage読み書きを禁$ etc...
なぜ古典的手法? 7 LLM-as-a-judgeのように先進的な評価手法もあるが、 コーディングエージェントへのフィードバックには銀の弾丸ではなB 7 非決定論的であり、真の意味で”保証”できなB 7 実行速度が遅く、エージェントのPDCAのボトルネックになる → 古典的な静的解析・自動テストが有効
古典的手法でもやり方はアップデートできそう PRレビュー内容からLintルールを自動作成して漸進的に育てR PdMやQAEとの協働したテストファースト実装 w/ コーディングエージェン0 etc...
参考(ちょっと古い) https://zenn.dev/ubie_dev/articles/7bade4112054c8
(2) コンテキスト注入
解空間の定義をLLMに与える 何らかの方法でLLMに「解空間の定義」を与える 代表的には Cursor Rules / Cline Rules など 解空間
会社・プロジェクト固有の アーキテクチャ・規約・デザインなど
例:デザインシステム(Ubie Vitals)のMCP化 ユーザーはFigmaのURLを入力する
例:デザインシステム(Ubie Vitals)のMCP化 Figma MCP でデザインデータを取得 Ubie Vitals MCP で必要なコンポーネント、トークンを取得
例:デザインシステム(Ubie Vitals)のMCP化 デザインシステムの資産を参照して 完成度の高い実装ができる MCP実装は超ナイーブで、 コンポーネント実装(Reactコード)を返すだけ
参考 https://zenn.dev/ubie_dev/articles/f927aaff02d618
なんでMCP? Rulesじゃダメ? u MCPとRulesの違 u MCPはオンデマンドに情報を取ってきてコンテキストに入れ2 u Rulesは事前にすべての情報をコンテキストに入れてお0 u Figma
MCPは動的な外部リソースをフェッチするのでMCPがマッチす2 u Ubie Vitals MCPは静的コンテンツなので本質的にはRulesで良いはず
なんでMCP? Rulesじゃダメ? C 単に現行モデルやエージェントの性能特性として、MCPの方がうまくいったので Ubie VitalsではMCPを使ってい C 事前に全てをRulesに入れるとぼやけてしまい、使ってほしい情報を使わなかっ C ただし、ロングコンテキストの性能改善が著しいので、近いうちにこういうMCP
の使い方はなくなるかも ともかく、コンテキストへの入力方法は瑣末な問題で、 入力するに値する情報(ドキュメント、デザインシステム、etc...)の整備が重要
ところで開発の”loop”って コーディングだけ?
DevOps全部やってほしい!
DevOps全部やってほしい!
CursorにPdM機能も持たせる 次のようなデータソースを MCP or CLI で繋げB ユーザーログ、メトリクス (BigQuery,
Lightdash 事業戦略、OKR (Notion チケット (Jira Why/Whatの探索からAC設定まで壁打e 最後に「じゃあこれで」と実装開始
参考 https://note.com/guchey/n/n773a2efd78cf
DevOps全部やってほしい! メトリクスから次のPBIへの 示唆を自動的に抽出 ユーザーログなど参考に 探索的テスト システムメトリクス、ユーザーログなどから 問題検出して切り戻し まだやれてないことが無限に
まとめ ' エージェントを自走させるためにはEnablingが必3 ' ジュニアエンジニアのアナロジーで課題を拾いやす@ ' ソリューションは古典的手法を活かしつつも、 人間ではなくLLMの特性からゼロベースで考えU ' そしてコーディングエージェントからフルサイクル開発エージェントへ
ありがとうございました