Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI Coding Agent Enablement - エージェントを自走させよう
Search
Yuku Kotani
April 08, 2025
Programming
14
7.5k
AI Coding Agent Enablement - エージェントを自走させよう
AI Coding Meetup #1
https://layerx.connpass.com/event/347094/
https://youtu.be/Q783txBWcOM?t=1339
Yuku Kotani
April 08, 2025
Tweet
Share
More Decks by Yuku Kotani
See All by Yuku Kotani
Scale out your Claude Code ~自社専用Agentで10xする開発プロセス~
yukukotani
9
2.2k
AI Coding Agent Enablement in TypeScript
yukukotani
19
11k
Expoによるアプリ開発の現在地とReact Server Componentsが切り開く未来
yukukotani
3
560
React 19でお手軽にCSS-in-JSを自作する
yukukotani
5
840
僕が思い描くTypeScriptの未来を勝手に先取りする
yukukotani
12
3.3k
Web技術を駆使してユーザーの画面を「録画」する
yukukotani
14
7.8k
Capacitor製のWebViewアプリからReact Native製のハイブリッドアプリへ
yukukotani
5
1.7k
Real World Type Puzzle and Code Generation
yukukotani
4
950
Kuma UI が提唱する Hybrid Approach CSS-in-JS の仕組み
yukukotani
2
580
Other Decks in Programming
See All in Programming
あのころの iPod を どうにか再生させたい
orumin
2
2.5k
それ CLI フレームワークがなくてもできるよ / Building CLI Tools Without Frameworks
orgachem
PRO
17
3.9k
実践!App Intents対応
yuukiw00w
1
280
Portapad紹介プレゼンテーション
gotoumakakeru
1
130
Understanding Ruby Grammar Through Conflicts
yui_knk
1
110
#QiitaBash TDDで(自分の)開発がどう変わったか
ryosukedtomita
1
370
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
120
Understanding Kotlin Multiplatform
l2hyunwoo
0
260
0から始めるモジュラーモノリス-クリーンなモノリスを目指して
sushi0120
1
280
kiroでゲームを作ってみた
iriikeita
0
170
CEDEC 2025 『ゲームにおけるリアルタイム通信への QUIC導入事例の紹介』
segadevtech
3
890
『リコリス・リコイル』に学ぶ!! 〜キャリア戦略における計画的偶発性理論と変わる勇気の重要性〜
wanko_it
1
530
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Into the Great Unknown - MozCon
thekraken
40
2k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Speed Design
sergeychernyshev
32
1.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
A better future with KSS
kneath
239
17k
RailsConf 2023
tenderlove
30
1.2k
Statistics for Hackers
jakevdp
799
220k
Building an army of robots
kneath
306
45k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
What's in a price? How to price your products and services
michaelherold
246
12k
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
AI Coding Agent Enablement ~エージェントを させよう~ 自走 @yukukotani 2025/04/08 -
AI Coding Meetup #1
自己紹介 Yuku Kotani VP of Technology @ Ubie, Inc. @yukukotani
@yukukotani
今日の趣旨 コーディングエージェントをイネーブリングして自走させたい! ベースとなる考え方と、具体的なアプローチを紹介します
自走ってなんだろう?
自走 = Human-in-the-Loop をなるべくやらない Copilot時代はスニペット単位でHuman-in-the-Loopを回していた Agent時代にはできるだけ自律的に判断させて1ループの作業単位を大きくしたい
auto-run (Yolo) mode で自走完了ではない auto-run は検証をスキップしてくれる機能であって、 本質的に必要な検証を行ってくれる機能ではない
デフォルトの解空間は大きすぎる デフォルトでは「文法に適合するコード(=パーサー検証)」程度の制約しかなく、 極めて広い解空間でエージェントが動く → 精度が低い 解空間 生成対象の言語のSyntax全体
基本方針:可能な限り解空間を絞る 会社・プロジェクト固有の解空間は本来もっと狭いはず 解空間 会社・プロジェクト固有の アーキテクチャ・規約・デザインなど
どうやって?
(1) 機械的検査
機械的検査で定義した解空間に押し戻す LLMの出力を機械的に受け入れ検査し、NGの場合はフィードバックする 解空間 機械的にフィードバックを与えて 解空間へ押し戻す
古典的な静的解析・自動テスト エージェントにLinterや型チェック、自動テストを実行させ その結果をもとに自律改善して、passするまで勝手にルーr まずは既存Linterを使ってコーディング規約的な部分を整備するのが簡G その上でプロジェクト固有の具体的なLintルールが伸び9
Ubieの~ モジュラモノリスのモジュールを超えたDBアクセスを禁$ 特定ファイル以外でのLocalStorage読み書きを禁$ etc...
なぜ古典的手法? 7 LLM-as-a-judgeのように先進的な評価手法もあるが、 コーディングエージェントへのフィードバックには銀の弾丸ではなB 7 非決定論的であり、真の意味で”保証”できなB 7 実行速度が遅く、エージェントのPDCAのボトルネックになる → 古典的な静的解析・自動テストが有効
古典的手法でもやり方はアップデートできそう PRレビュー内容からLintルールを自動作成して漸進的に育てR PdMやQAEとの協働したテストファースト実装 w/ コーディングエージェン0 etc...
参考(ちょっと古い) https://zenn.dev/ubie_dev/articles/7bade4112054c8
(2) コンテキスト注入
解空間の定義をLLMに与える 何らかの方法でLLMに「解空間の定義」を与える 代表的には Cursor Rules / Cline Rules など 解空間
会社・プロジェクト固有の アーキテクチャ・規約・デザインなど
例:デザインシステム(Ubie Vitals)のMCP化 ユーザーはFigmaのURLを入力する
例:デザインシステム(Ubie Vitals)のMCP化 Figma MCP でデザインデータを取得 Ubie Vitals MCP で必要なコンポーネント、トークンを取得
例:デザインシステム(Ubie Vitals)のMCP化 デザインシステムの資産を参照して 完成度の高い実装ができる MCP実装は超ナイーブで、 コンポーネント実装(Reactコード)を返すだけ
参考 https://zenn.dev/ubie_dev/articles/f927aaff02d618
なんでMCP? Rulesじゃダメ? u MCPとRulesの違 u MCPはオンデマンドに情報を取ってきてコンテキストに入れ2 u Rulesは事前にすべての情報をコンテキストに入れてお0 u Figma
MCPは動的な外部リソースをフェッチするのでMCPがマッチす2 u Ubie Vitals MCPは静的コンテンツなので本質的にはRulesで良いはず
なんでMCP? Rulesじゃダメ? C 単に現行モデルやエージェントの性能特性として、MCPの方がうまくいったので Ubie VitalsではMCPを使ってい C 事前に全てをRulesに入れるとぼやけてしまい、使ってほしい情報を使わなかっ C ただし、ロングコンテキストの性能改善が著しいので、近いうちにこういうMCP
の使い方はなくなるかも ともかく、コンテキストへの入力方法は瑣末な問題で、 入力するに値する情報(ドキュメント、デザインシステム、etc...)の整備が重要
ところで開発の”loop”って コーディングだけ?
DevOps全部やってほしい!
DevOps全部やってほしい!
CursorにPdM機能も持たせる 次のようなデータソースを MCP or CLI で繋げB ユーザーログ、メトリクス (BigQuery,
Lightdash 事業戦略、OKR (Notion チケット (Jira Why/Whatの探索からAC設定まで壁打e 最後に「じゃあこれで」と実装開始
参考 https://note.com/guchey/n/n773a2efd78cf
DevOps全部やってほしい! メトリクスから次のPBIへの 示唆を自動的に抽出 ユーザーログなど参考に 探索的テスト システムメトリクス、ユーザーログなどから 問題検出して切り戻し まだやれてないことが無限に
まとめ ' エージェントを自走させるためにはEnablingが必3 ' ジュニアエンジニアのアナロジーで課題を拾いやす@ ' ソリューションは古典的手法を活かしつつも、 人間ではなくLLMの特性からゼロベースで考えU ' そしてコーディングエージェントからフルサイクル開発エージェントへ
ありがとうございました