Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
物体追跡
Search
Masafumi Abeta
January 24, 2022
Science
0
320
物体追跡
社内勉強会で発表した資料です。
Masafumi Abeta
January 24, 2022
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
350
GPTモデルでキャラクター設定する際の課題
abeta
0
340
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
250
GPT Short Talk
abeta
0
140
拡散モデルについて少しだけ
abeta
0
69
動的計画モデル
abeta
0
170
特徴量記述
abeta
0
200
Other Decks in Science
See All in Science
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
250
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
機械学習 - SVM
trycycle
PRO
1
950
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.5k
Hakonwa-Quaternion
hiranabe
1
160
検索と推論タスクに関する論文の紹介
ynakano
1
110
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
力学系から見た現代的な機械学習
hanbao
3
3.7k
Vibecoding for Product Managers
ibknadedeji
0
120
データベース03: 関係データモデル
trycycle
PRO
1
320
Featured
See All Featured
A designer walks into a library…
pauljervisheath
210
24k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Claude Code のすすめ
schroneko
65
200k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.8k
Skip the Path - Find Your Career Trail
mkilby
0
27
Scaling GitHub
holman
464
140k
30 Presentation Tips
portentint
PRO
1
170
Faster Mobile Websites
deanohume
310
31k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
31
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Code Review Best Practice
trishagee
74
19k
Transcript
XX University 物体追跡 2022.01.24 Abeta
2 テンプレートマッチング テンプレート画像を⾛査させて、⼀致度が⾼い箇所を検出する。動画では検出、テンプレート画像の更新を繰 り返して追跡を⾏う。 𝑆!!" (𝑥# , 𝑦# ) =
( $!%& '!() ( *!%& +!() 𝐼# 𝑥# + 𝑥, , 𝑦# + 𝑦, − 𝐼, 𝑥, , 𝑦, - 差分は⼆乗和や絶対値和を使⽤する。
3 Meanshift 探索窓内の点群の重⼼に、探索窓の中⼼を移すという処理を繰り返す。 2値画像の中の物体重⼼を求めることに使⽤し、物体を追跡する。
4 CAMshift(Continuously Adaptive Meanshift) ターゲットの⼤きさや回転に合わせて、ウィンドウの⼤きさを調整しながらMeanshiftを⾏う。 https://docs.opencv.org/4.x/d7/d00/tutorial_meanshift.html
5 カルマンフィルター カルマンフィルターは、逐次ベイズフィルターの⼀種であり、測定データからシステムの状態を推定するアル ゴリズム。 直前までの情報と、たった今取得したデータをもとに、もっとも適切な(最適な)システムの状 態を推定する⼿ 法。ただし、測定値にはノイズが乗っており、システムの状態を⽰す変数⾃ 体にもノイズが乗っているもの とする。 https://jp.mathworks.com/discovery/kalman-filter.html
https://www.avelio.co.jp/math/wordpress/?p=605 http://www1.accsnet.ne.jp/~aml00731/kalman.pdf
6 https://jp.mathworks.com/discovery/kalman-filter.html
7 粒⼦フィルター パーティクルフィルタは、複数の粒⼦にノイズをくわえながら観測データとモデルを元に内部状態を推定しく ⼿法。⾮線形なモデルに対しても適⽤でき、粒⼦の数だけ精度はよくなるが、計算量もその分増え、粒⼦数が Nのときに時間計算量はO(N)となる。 実装が簡単で様々な分野で適⽤することができるのが特徴. https://www.matsue-ct.jp/ee/index.php/ja/30-denki-menu20130501-4/denki-cat-senkoka-kenkyu/denki-cat-senkoka-kenkyu-2014/251-senkoka-kenkyu2014-8 http://www.thothchildren.com/chapter/5c7bc083ba4d5d6b2c2419ea
8 DeepSORT SeepSORTは3つの技術で構成される。 • YOLO:物体検出 • ReId(Person Re-Identification):個⼈識別 • SORT(Simple
Online Realtime Tracking):バウンディングボックスの予測 予測 𝑡 𝑡 + 1 物体認識 ⼈物の類似度と 重なりで同⼀判定
9 参考⽂献 • 中村恭之, ⼩枝正直, 上⽥悦⼦, 『OpenCVによるコンピュータビジョン・機械学習⼊⾨』, 講談社, 2017