Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
物体追跡
Search
Masafumi Abeta
January 24, 2022
Science
0
310
物体追跡
社内勉強会で発表した資料です。
Masafumi Abeta
January 24, 2022
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
320
GPTモデルでキャラクター設定する際の課題
abeta
0
320
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
240
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
65
動的計画モデル
abeta
0
170
特徴量記述
abeta
0
200
Other Decks in Science
See All in Science
MCMCのR-hatは分散分析である
moricup
0
500
Lean4による汎化誤差評価の形式化
milano0017
1
370
Accelerated Computing for Climate forecast
inureyes
PRO
0
130
機械学習 - SVM
trycycle
PRO
1
920
データベース03: 関係データモデル
trycycle
PRO
1
290
Machine Learning for Materials (Challenge)
aronwalsh
0
360
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
300
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
380
2025-06-11-ai_belgium
sofievl
1
180
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
110
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
機械学習 - DBSCAN
trycycle
PRO
0
1.2k
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Rails Girls Zürich Keynote
gr2m
95
14k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
GraphQLとの向き合い方2022年版
quramy
49
14k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
The Pragmatic Product Professional
lauravandoore
36
7k
Designing for Performance
lara
610
69k
How STYLIGHT went responsive
nonsquared
100
5.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
XX University 物体追跡 2022.01.24 Abeta
2 テンプレートマッチング テンプレート画像を⾛査させて、⼀致度が⾼い箇所を検出する。動画では検出、テンプレート画像の更新を繰 り返して追跡を⾏う。 𝑆!!" (𝑥# , 𝑦# ) =
( $!%& '!() ( *!%& +!() 𝐼# 𝑥# + 𝑥, , 𝑦# + 𝑦, − 𝐼, 𝑥, , 𝑦, - 差分は⼆乗和や絶対値和を使⽤する。
3 Meanshift 探索窓内の点群の重⼼に、探索窓の中⼼を移すという処理を繰り返す。 2値画像の中の物体重⼼を求めることに使⽤し、物体を追跡する。
4 CAMshift(Continuously Adaptive Meanshift) ターゲットの⼤きさや回転に合わせて、ウィンドウの⼤きさを調整しながらMeanshiftを⾏う。 https://docs.opencv.org/4.x/d7/d00/tutorial_meanshift.html
5 カルマンフィルター カルマンフィルターは、逐次ベイズフィルターの⼀種であり、測定データからシステムの状態を推定するアル ゴリズム。 直前までの情報と、たった今取得したデータをもとに、もっとも適切な(最適な)システムの状 態を推定する⼿ 法。ただし、測定値にはノイズが乗っており、システムの状態を⽰す変数⾃ 体にもノイズが乗っているもの とする。 https://jp.mathworks.com/discovery/kalman-filter.html
https://www.avelio.co.jp/math/wordpress/?p=605 http://www1.accsnet.ne.jp/~aml00731/kalman.pdf
6 https://jp.mathworks.com/discovery/kalman-filter.html
7 粒⼦フィルター パーティクルフィルタは、複数の粒⼦にノイズをくわえながら観測データとモデルを元に内部状態を推定しく ⼿法。⾮線形なモデルに対しても適⽤でき、粒⼦の数だけ精度はよくなるが、計算量もその分増え、粒⼦数が Nのときに時間計算量はO(N)となる。 実装が簡単で様々な分野で適⽤することができるのが特徴. https://www.matsue-ct.jp/ee/index.php/ja/30-denki-menu20130501-4/denki-cat-senkoka-kenkyu/denki-cat-senkoka-kenkyu-2014/251-senkoka-kenkyu2014-8 http://www.thothchildren.com/chapter/5c7bc083ba4d5d6b2c2419ea
8 DeepSORT SeepSORTは3つの技術で構成される。 • YOLO:物体検出 • ReId(Person Re-Identification):個⼈識別 • SORT(Simple
Online Realtime Tracking):バウンディングボックスの予測 予測 𝑡 𝑡 + 1 物体認識 ⼈物の類似度と 重なりで同⼀判定
9 参考⽂献 • 中村恭之, ⼩枝正直, 上⽥悦⼦, 『OpenCVによるコンピュータビジョン・機械学習⼊⾨』, 講談社, 2017