H., Pearl, D., & Boone, W. J. (2014): Assessing scientific practices using machine- learning methods: How closely do they match clinical interview performance?. Journal of Science education and Technology, 23(1), 160-182. • Breiman, L. (2001): Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231. • Gerard, L. F., & Linn, M. C. (2016): Using automated scores of student essays to support teacher guidance in classroom inquiry. Journal of Science Teacher Education, 27(1), 111-129. • Lee, H. S., Gweon, G. H., Lord, T., Paessel, N., Pallant, A., & Pryputniewicz, S. (2021): Machine learning-enabled automated feedback: supporting students’ revision of scientific arguments based on data drawn from simulation. Journal of Science Education and Technology, 30(2), 168-192. • Moharreri, K., Ha, M., & Nehm, R. H. (2014): EvoGrader: an online formative assessment tool for automatically evaluating written evolutionary explanations. Evolution: Education and Outreach, 7(1), 1-14. • 中村大輝, 松浦拓也 (2022): 文系・理系の自己認識の形成時期に関する一考察.日本科学教育学会年会論文集, 46, 564-567. • 杉山聡 (2022): 本質を捉えたデータ分析のための分析モデル入門. ソシム. • Tekin, A. (2014): Early prediction of students’ grade point averages at graduation: A data mining approach. Eurasian Journal of Educational Research, 54, 207-226. • Zhai, X., He, P., & Krajcik, J. (2022): Applying machine learning to automatically assess scientific models. Journal of Research in Science Teaching. • Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020a): Applying machine learning in science assessment: a systematic review. Studies in Science Education, 56(1), 111-151.