Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
成長を止めない機械学習のやり方 / Don't stop 'til you get enoug...
Search
Yuichiro Someya
March 23, 2018
Programming
15
5.1k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
https://manabiya.tech
Yuichiro Someya
March 23, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
13k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
940
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
310
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
19k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
2.9k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
400
How we use GPUs in Cookpad
ayemos
0
120
Other Decks in Programming
See All in Programming
クリエイティブコーディングとRuby学習 / Creative Coding and Learning Ruby
chobishiba
0
3.9k
今年のアップデートで振り返るCDKセキュリティのシフトレフト/2024-cdk-security-shift-left
tomoki10
0
200
Cloudflare MCP ServerでClaude Desktop からWeb APIを構築
kutakutat
1
540
The Efficiency Paradox and How to Save Yourself and the World
hollycummins
1
440
PHPで学ぶプログラミングの教訓 / Lessons in Programming Learned through PHP
nrslib
2
230
テストケースの名前はどうつけるべきか?
orgachem
PRO
0
130
Refactor your code - refactor yourself
xosofox
1
260
快速入門可觀測性
blueswen
0
350
rails stats で紐解く ANDPAD のイマを支える技術たち
andpad
1
290
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
930
talk-with-local-llm-with-web-streams-api
kbaba1001
0
180
useSyncExternalStoreを使いまくる
ssssota
6
1k
Featured
See All Featured
A designer walks into a library…
pauljervisheath
204
24k
Bash Introduction
62gerente
608
210k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
BBQ
matthewcrist
85
9.4k
Thoughts on Productivity
jonyablonski
67
4.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Code Reviewing Like a Champion
maltzj
520
39k
Transcript
ΛࢭΊͳ͍ ػցֶशͷΓํ ΫοΫύουגࣜձࣾɹછ୩༔Ұ ."/"#*:"
ࣗݾհ છ୩༔Ұ<:VJDIJSP4PNFZB> ౦ژۀେֶେֶӃܭࢉֶम࢜ ΫοΫύουגࣜձࣾݚڀ։ൃ෦ ϦαʔνΤϯδχΞ݄d ػցֶशج൫
Ϩγϐσʔλͷੳ UXJUUFSDPN!BZFNPT@Z HJUIVCDPNBZFNPT IUUQTXXXBZFNPTNF
None
ϨγϐɿສҎ্ ࠃͷ݄ؒར༻ऀɿສਓ
ରԠݴޠɿݴޠϲࠃ ւ֎ͷ݄ؒར༻ऀɿສਓҎ্
ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ࢲ͕ଐ͞Εͨͷಉ࣌ظ ໊࣌ͷϝϯόʔ ݄ݱࡏࠃʹ໊ ւ֎ʹ໊
ྉཧ͖Ζ͘ ΈࠐΈχϡʔϥϧωοτϫʔΫ ʹΑΔྉཧը૾ͷࣗಈೝࣝ εϚʔτϑΥϯͷࣸਅͷɺ ྉཧࣸਅΛࣗಈతʹऩूه
ྉཧ͖Ζ͘ ສਓҎ্ͷϢʔβʔ͕ར༻ ສຕҎ্ͷྉཧࣸਅΛه ݄ݱࡏ
ͦͷଞػցֶशϓϩδΣΫτ ը૾ੳʹΑΔϨγϐͷྨ ࡐྉ໊ͷਖ਼نԽ <͓͠ΐ͏Ώ ে༉ γϣʔϢ><͠ΐ͏Ώ>
ϑΟʔυόοΫͷࣗಈλά͚ FUD
લஔ͖
l લུ ʮ࣭ʯ·Ͱ͍͔ͳ͍͕ؾʹͳ͍ͬͯΔ͜ͱɺ ʮճʯΛΓ͍͕ͨͳ͔ͳ͔Δػձ͕ͳ͔ͬͨ͜ͱɻ ͦ͏͍ͬͨٙΛຊத͔ΒूΊɺ ΧϯϑΝϨϯεΛ௨ͯ͡ղܾࡦΛݟग़͠ɺܙΛੜΈग़͢ɻ ͜Ε͕ɺ."/"#*:"Λ։࠵͢Δ͍Ͱ͢ɻz IUUQTNBOBCJZBUFDI
l લུ ʮ࣭ʯ·Ͱ͍͔ͳ͍͕ؾʹͳ͍ͬͯΔ͜ͱɺ ʮճʯΛΓ͍͕ͨͳ͔ͳ͔Δػձ͕ͳ͔ͬͨ͜ͱɻ ͦ͏͍ͬͨٙΛຊத͔ΒूΊɺ ΧϯϑΝϨϯεΛ௨ͯ͡ղܾࡦΛݟग़͠ɺܙΛੜΈग़͢ɻ ͜Ε͕ɺ."/"#*:"Λ։࠵͢Δ͍Ͱ͢ɻz IUUQTNBOBCJZBUFDI ՝ͷڞ༗
ղܾࡦͷྻڍͱੳ
lຊηογϣϯͰ·ͣػցֶशΛऔΓೖΕͨ৫ʹ͓͚Δ ՁΛ્͋Δ͍ಷԽͤ͞Δز͔ͭͷཁҼΛࢦఠ͠ɺ ͦΕΒͷཁҼʹ͍ͭͯ։ൃج൫ΤϯδχΞϦϯάɺ νʔϜߏ༷ʑͳ͔֯Βߟ͠·͢ɻ·ͨ͞Βʹɺ ͦͷΑ͏ͳ՝ʹର͢ΔΫοΫύουͷऔΓΈΛհ͠·͢ɻz
lຊηογϣϯͰ·ͣػցֶशΛऔΓೖΕͨ৫ʹ͓͚Δ ՁΛ્͋Δ͍ಷԽͤ͞Δز͔ͭͷཁҼΛࢦఠ͠ɺ ͦΕΒͷཁҼʹ͍ͭͯ։ൃج൫ΤϯδχΞϦϯάɺ νʔϜߏ༷ʑͳ͔֯Βߟ͠·͢ɻ·ͨ͞Βʹɺ ͦͷΑ͏ͳ՝ʹର͢ΔΫοΫύουͷऔΓΈΛհ͠·͢ɻz ՝ͷڞ༗ ղܾࡦͷྻڍͱੳ
ʰΛࢭΊͳ͍ػցֶशͷΓํʱ ػցֶशʹऔΓΉݱʹ͓͚Δ՝Λࢦఠ͠ɺੳ͠·͢ɻ
ΞδΣϯμ ͡ΊʹਓೳϒʔϜͱݬ໓ظ ΛࢭΊͳ͍ػցֶशͷΓํʙ৫ɾνʔϜฤʙ αʔϏε։ൃͱػցֶश ػցֶशϓϩδΣΫτ
ΛࢭΊͳ͍ػցֶशͷΓํʙݸਓฤʙ ૯߹֨ಆٕͱͯ͠ͷػցֶश
ਓೳϒʔϜͱݬ໓ظ
ਓೳϒʔϜ ʰୈ࣍ਓೳϒʔϜʱ ը૾ྨʹ͓͚ΔਂֶशͷՌΛ͖͔͚ͬͱ͢Δ ਓೳ࣮ݱͷखஈͷ̍ͭͱͯ͠ػցֶशͷࢿʗظߴ·Δ ϋʔυΣΞʗιϑτΣΞʹ͔͔ΘΒͣ͋ΒΏΔྖҬʹԠ༻͞ΕΑ ͏ͱ͍ͯ͠Δ
ΫοΫύουͷ༷ͳαʔϏε։ൃͷݱྫ֎Ͱͳ͍
IUUQXXXHBSUOFSDPKQQSFTTIUNMQSIUNM
ϒʔϜ͔Βݬ໓ظ "*ʹظ͕աʹൃͨ͠ͷͪʰౙʱ͕๚ΕΔͱ͍͏ྺ࢙͕͋Δ ݬ໓ظΛΓӽ͍ͯͨ͘Ίʹݱͷզʑ͕͖͢͜ͱ ʰΛࢭΊͳ͍ػցֶशͷΓํʱ ࠓճɺαʔϏε։ൃݱͱͯ͠ͷΫοΫύουͱ͍͏ڥͰಘΒΕ ͨݟΛத৺ʹɺ͜ͷ՝ʹ͍ͭͯߟ͍͖͑ͯ·͢
ΛࢭΊͳ͍ػցֶशͷΓํ ৫ɾνʔϜฤ
ΞδΣϯμ ͡ΊʹਓೳϒʔϜͱݬ໓ظ ΛࢭΊͳ͍ػցֶशͷΓํʙ৫ɾνʔϜฤʙ αʔϏε։ൃͱػցֶश ػցֶशϓϩδΣΫτ
ΛࢭΊͳ͍ػցֶशͷΓํʙݸਓฤʙ ૯߹֨ಆٕͱͯ͠ͷػցֶश ͡ΊʹਓೳϒʔϜͱݬ໓ظ ΛࢭΊͳ͍ػցֶशͷΓํʙ৫ɾνʔϜฤʙ αʔϏε։ൃͱػցֶश ػցֶशϓϩδΣΫτ ΛࢭΊͳ͍ػցֶशͷΓํʙݸਓฤʙ ૯߹֨ಆٕͱͯ͠ͷػցֶश
αʔϏε։ൃͱػցֶश αʔϏε։ൃͰػցֶशΛ͍͍ͨͱ͍͏χʔζ͕૿͍͑ͯΔ ਓೳϒʔϜʹґΔͱ͜Ζ͕େ͖͍ ଟ ʰػցֶशΛ͏ʱͱʁ
՝ൃݟ ΰʔϧઃఆ σʔλऩू σʔλՃ ੳ &%" ֶश ධՁݕূ ຊ൪ ධՁݕূ
͏ ࡞Δ ՝ൃݟ ΰʔϧઃఆ σʔλऩू σʔλՃ ੳ &%" ֶश ධՁݕূ
ຊ൪ ධՁݕূ σ ϓ ϩ Π
ྫϞσϧͷ"1*Խʹඞཁͳͷ ֶशࡁΈϞσϧ ͷEVNQ NPEFM\QC I ^ "1* BQQQZ
)551 T &OEQPJOU QSFEJDU JOGPͱ͔ ϞσϧͷಡΈࠐΈͱ*0ϋϯυϥ ࡞ۀ طଘγεςϜʗΠϯϑϥͷΠϯςάϨʔγϣϯ -#ɺϞχλϦϯάɺ%/4ʑ ࣮ߦڥ %PDLFSpMF
ྫϞσϧͷ"1*Խʹඞཁͳͷ ֶशࡁΈϞσϧ ͷEVNQ NPEFM\QC I ^ "1* BQQQZ
)551 T &OEQPJOU QSFEJDU JOGPͱ͔ ϞσϧͷಡΈࠐΈͱ*0ϋϯυϥ ࡞ۀ طଘγεςϜʗΠϯϑϥͷΠϯςάϨʔγϣϯ -#ɺϞχλϦϯάɺ%/4ʑ ࣮ߦڥ %PDLFSpMF ػցֶशϞσϧͷσϓϩΠʹ खؒͱ͕͔͔࣌ؒΔ
def is_food_image(self, image_io): image = Image.open(image_io) result = self.classifier.infer(image) return
result == Category.food ར༻ྫྉཧ͖Ζ͘ͷ߹ ύοέʔδԽ͞ΕͨػցֶशϞσϧͷݺͼग़͠ ͋Δ͍҉ͳ"1*ίʔϧ
def is_food_image(self, image_io): image = Image.open(image_io) result = self.classifier.infer(image) return
result == Category.food ྫྉཧ͖Ζ͘ͷ߹ ύοέʔδԽ͞ΕͨػցֶशϞσϧͷݺͼग़͠ ͋Δ͍҉ͳ"1*ίʔϧ έʔεʹΑΔ͕ αʔϏε։ൃͱ͍͏จ຺ʹ͓͍ͯ ػցֶशϞσϧίʔυͰ࣮͞ΕͨϩδοΫ ͱಉʹѻΘΕ͏Δ
͏ ࡞Δ ϨγϐྨثͷΧςΰϦʹ ʰຑം౾ʱΛͯ͠Έ͍ͨ िؒ͘Β͍͔͔Δͳ Ϛδ͔ʂ if category == 'ΧϨʔ':
foo() + elif category == 'ຑം౾': + bar() ՝ൃݟ ΰʔϧઃఆ σʔλऩू σʔλՃ ੳ &%" ֶश ධՁݕূ ຊ൪ ධՁݕূ
αʔϏε։ൃͱϞσϧͷ։ൃʗσϓϩΠ ͷεϐʔυײʹΪϟοϓ͕͋Δ
Ͳ͏͢Εʁ ਓࡐஔͷ࠷దԽ
͏ ࡞Δ ϨγϐྨثͷΧςΰϦʹ ʰຑം౾ʱΛͯ͠Έ͍ͨ िؒ͘Β͍͔͔Δͳ Ϛδ͔ʂ if category == 'ΧϨʔ':
foo() + elif category == 'ຑം౾': + bar() ՝ൃݟ ΰʔϧઃఆ σʔλऩू σʔλՃ ੳ &%" ֶश ධՁݕূ ຊ൪ ධՁݕূ
͏ ࡞Δ ϨγϐྨثͷΧςΰϦʹ ʰຑം౾ʱΛͯ͠Έ͍ͨ िؒ͘Β͍͔͔Δͳ Ϛδ͔ʂ if category == 'ΧϨʔ':
foo() + elif category == 'ຑം౾': + bar() ՝ൃݟ ΰʔϧઃఆ σʔλऩू σʔλՃ ੳ &%" ֶश ධՁݕূ ຊ൪ ධՁݕূ
ਓࡐஔͷ࠷దԽ αʔϏε։ൃʹػցֶशΛԠ༻͢Δ͜ͱʹෆ׳Εͳݱͷ߹ αʔϏε։ൃʹٻΊΒΕΔ։ൃεϐʔυͱ ػցֶशϞσϧͷ։ൃͱσϓϩΠʹ͔͔Δ࣌ؒ ྆ऀʹΪϟοϓ͕͋Δɺͱ͍͏Λڞ༗ͯ͠าΈدΔ
ྫ͑ਓతϦιʔεͷஔΛݟͯ͠ΈΔ ྫɿαʔϏε։ൃଆͷΤϯδχΞ͕ϞσϧͷσϓϩΠΛख͏
Ͳ͏͢Εʁ ਓࡐஔͷ࠷దԽ औΓΉͷݟ͠ Ϟσϧ։ൃʗσϓϩΠͷޮԽ
Ͳ͏͢Εʁ ਓࡐஔͷ࠷దԽ औΓΉͷݟ͠ Ϟσϧ։ൃʗσϓϩΠͷޮԽ ։ൃεϐʔυͷҧ͍ػցֶशಛ༗ͷίετΛՃຯ্ͨ͠Ͱɺ ػցֶशΛར༻ͯ͠औΓΉ͖ͳͷ͔ߟ͑ͳ͓͢ IUUQTSFTFBSDIHPPHMFDPNQVCTQVCIUNM
ʰػցֶशٕज़తෛ࠴ͷߴརି͠ ҙ༁ ʱ
Ͳ͏͢Εʁ ਓࡐஔͷ࠷దԽ औΓΉͷݟ͠ Ϟσϧ։ൃʗσϓϩΠͷޮԽ
Ϟσϧ։ൃʗσϓϩΠͷޮԽ ։ൃσʔλͷੳɺ࣮ݧɺϞσϧͷֶश σϓϩΠύοέʔδԽɺ"1*Խ
Ϟσϧ։ൃʗσϓϩΠͷޮԽ ։ൃσʔλͷੳɺ࣮ݧɺϞσϧͷֶश σϓϩΠύοέʔδԽɺ"1*Խ
ػցֶशج൫ ػցֶशʹؔΘΔ࣮ݧ։ൃͷεϐʔυΛ্͛Δҝͷج൫ ΫοΫύουݚڀ։ൃ෦෦ࣗͰੵۃతʹվળ͍ͯ͠Δ IUUQTTQFBLFSEFDLDPNBZFNPTNBDIJOF MFBSOJOHQMBUGPSNBUDPPLQBE IUUQTTQFBLFSEFDLDPNBZFNPTBDDFMFSBUF NBDIJOFMFBSOJOHXJUIBXT
ΦϯσϚϯυ(16࣮ݧڥ
ΦϯσϚϯυ(16࣮ݧڥ ւ֎ؚΊ໊ͷϝϯόʔ͕͍Δ ෳͷϓϩδΣΫτʹෳͷਓ͕औΓΉ ࣮ݧ༻ͷܭࢉػڥΛͲͷΑ͏ʹ༻ҙ͢Δ͔ $IBUCPUܦ༝ͰىಈఀࢭՄೳͳΦϯσϚϯυ(16࣮ݧڥ
ʰ࣮ݧ༻Πϯελϯε࡞ͬͯʱ ઃఆࡁΈΠϯελϯεͷ εφοϓγϣοτ ".* ATTIBZFNPTXPSLCFODIEOTDPNQBOZA $SFBUF
ʰ࣮ݧ༻Πϯελϯε࡞ͬͯʱ ઃఆࡁΈΠϯελϯεͷ εφοϓγϣοτ ".* ATTIBZFNPTXPSLCFODIEOTDPNQBOZA $SFBUF IUUQTTQFBLFSEFDLDPNBZFNPTNBDIJOF
MFBSOJOHQMBUGPSNBUDPPLQBE ৄ͘͠
ϓϩδΣΫτςϯϓϨʔτ ʹΑΔ࣮ݧ࠶ݱੑͷ্
ྫͷϓϩδΣΫτͷ ࣮ݧ͕͍ͨ͠ OPUFCPPLͱεΫϦϓτϨϙδτϦʹɺ σʔλࠓखݩʹ͔͠ͳ͍ʜ ͍
࣮ݧ࠶ݱੑͷԼ ͍͍ͭͭ࠶ݱੑͷͳ͍ঢ়ଶΛ࡞ͬͯ͠·͏ ϫʔΫϑϩʔཧͱ͔େֻ͔Γͳͷͪΐͬͱʜ
$PPLJFDVUUFSʹΑΔςϯϓϨʔτԽ ϓϩδΣΫτͷςϯϓϨʔτԽ SVCZʹCVOEMFS͕͋Δ͚Ͳʜ IUUQTHJUIVCDPNBVESFZSDPPLJFDVUUFS 1ZUIPO +JOKB
ͷ൚༻ͳϓϩδΣΫτςϯϓϨʔτੜπʔϧ ಠࣗͷςϯϓϨʔτΛΉ͜ͱ͕ग़དྷɺσʔλαΠΤϯε༻ͷ͋Δ IUUQTHJUIVCDPNESJWFOEBUBDPPLJFDVUUFSEBUBTDJFODF
ESJWFOEBUBDPPLJFDVUUFSEBUBTDJFODF A.BLFpMFA֤छศརUBSHFUͱ͔ઃఆͱ͔ ASFRVJSFNFOUTUYUAґଘϥΠϒϥϦͷϦετ ֤छطσΟϨΫτϦ ATSDEBUBA ATSDNPEFMAͦΕͧΕσʔλͷੜʗલॲཧ༻ɺ
Ϟσϧͷֶश༻εΫϦϓτΛஔ͘ AEBUBAHJUJHOPSF͞ΕΔɺ.BLFpMFͷUBSHFUͰ4ͱTZOD
ྫͷϓϩδΣΫτͷ ࣮ݧ͕͍ͨ͠ HJUDPQBOZDPNSFTFBSDISFDJQFBOBMZTJT ͜͜ʙ HJUDMPOF NBLFTZOD@EBUB@GSPN@T
EPDLFSTDJFODFDPPLJFDVUUFSEPDLFSTDJFODF IUUQTHJUIVCDPNEPDLFSTDJFODFDPPLJFDVUUFSEPDLFS TDJFODF EPDLFSΛར༻͠ɺϓϩδΣΫτͷ࣮ݱੑΛ͞ΒʹߴΊΔ OPUFCPPLͷ্ཱͪ͛ 1PSUGPSXBSEߦ͏UBSHFU
Ϟσϧ։ൃʗσϓϩΠͷޮԽ ։ൃσʔλͷੳɺ࣮ݧɺϞσϧͷֶश ΫϥυڥΛ׆͔ͨ͠ΦϯσϚϯυ(16࣮ݧڥͷ࣮ݱ ϓϩδΣΫτͷςϯϓϨʔτԽʹΑΔ࣮ݧ࠶ݱੑͷ্ σϓϩΠύοέʔδԽɺ"1*Խ
Ϟσϧ։ൃʗσϓϩΠͷޮԽ ։ൃσʔλͷੳɺ࣮ݧɺϞσϧͷֶश ΫϥυڥΛ׆͔ͨ͠ΦϯσϚϯυ(16࣮ݧڥͷ࣮ݱ ϓϩδΣΫτͷςϯϓϨʔτԽʹΑΔ࣮ݧ࠶ݱੑͷ্ σϓϩΠύοέʔδԽɺ"1*Խ
ػցֶशϞσϧͷσϓϩΠ ͱ αʔόʔͷຒΊࠐΈʗύοέʔδʗ"1*
ػցֶशϞσϧͷσϓϩΠ ͱ αʔόʔͷຒΊࠐΈʗύοέʔδʗ"1* ϞσϧΛಡΈࠐΜͰɺ֎෦ϦΫΤετʹԠͯ͡ϞσϧΛ ݺͼग़͢ബ͘খ͞ͳ"1*Λ࣮͢Δ
"1* .JDSPTFSWJDF ͕͍͍ཧ༝ ͦͷଞͷख๏ ྫ͑ΞϓϦαʔόʔͷΈࠐΈ ͱൺͯ ػցֶशϞσϧͷσϓϩΠख๏ͱͯ͠ద͍ͯ͠Δཧ༝
"1* .JDSPTFSWJDF ͕͍͍ཧ༝ ػցֶशͱΞϓϦͰҟͳΔ࣮ߦڥ͕ར༻Ͱ͖Δ ҟͳΔݴޠɺ$16(16 "1*ͷεέʔϧʹΑͬͯߴεϧʔϓοτͷ࣮ݱՄೳ
ػցֶशϞσϧʹΑΔਪॏ͍ ྨثɺͷϓϦϛςΟϒͳػೳͷ࠶ར༻ ։ൃʹ͓͚Δ୲ൣғͷڥքઢͱͯ͠࠷ద ͩͱࢥ͏
࠶ܝϞσϧͷ"1*Խʹඞཁͳͷ ֶशࡁΈϞσϧ ͷEVNQ NPEFM\QC I ^ "1* BQQQZ
)551 T &OEQPJOU QSFEJDU JOGPͱ͔ ϞσϧͷಡΈࠐΈͱ*0ϋϯυϥ ࡞ۀ طଘγεςϜʗΠϯϑϥͷΠϯςάϨʔγϣϯ -#ɺϞχλϦϯάɺ%/4ʑ ࣮ߦڥ %PDLFSpMF ػցֶशͱͷυϝΠϯڞ༗ େ খ
࠶ܝϞσϧͷ"1*Խʹඞཁͳͷ ֶशࡁΈϞσϧ ͷEVNQ NPEFM\QC I ^ "1* BQQQZ
)551 T &OEQPJOU QSFEJDU JOGPͱ͔ ϞσϧͷಡΈࠐΈͱ*0ϋϯυϥ ࡞ۀ طଘγεςϜʗΠϯϑϥͷΠϯςάϨʔγϣϯ -#ɺϞχλϦϯάɺ%/4ʑ ࣮ߦڥ %PDLFSpMF ػցֶशͱͷυϝΠϯڞ༗ େ খ ͜ͷล͕ಛʹਏ͍
ϚωʔδυͳσϓϩΠج൫ ͋Δ͍ࣗ࡞ͷͦΕ Ϟσϧͷ"1*Խɺ࣮ߦڥͷඋͳͲڞ௨Խ͢Δ༨͕͋Δ ڞ௨Խ͞Εͨج൫Λఏڙ͢ΔࣄͰɺσϓϩΠखॱΛॖग़དྷΔ ৄ͘͠ IUUQTTQFBLFSEFDLDPNBZFNPTNBDIJOF MFBSOJOHQMBUGPSNBUDPPLQBE
ΛࢭΊͳ͍ػցֶशͷΓํ ݸਓฤ
૯߹֨ಆٕͱͯ͠ͷػցֶश ʰػցֶश͕ग़དྷΔΑ͏ʹͳΔʱͱ
None
1ZUIPO %PDLFS TDJLJUMFBSO 5FOTPS'MPX .F$BC 42- ,FSBT ϕΠζ౷ܭ χϡʔϥϧωοτ "84
($1 3 47. LBHHMF
૯߹֨ಆٕͱͯ͠ͷػցֶश ʰػցֶश͕ग़དྷΔΑ͏ʹͳΔʱͱ ϒʔϜख͍ɺใ͕൙ཞ͍ͯ͠Δ Α͏ʹݟ͑Δ ʰ͋Ε͜Εֶͼͨա͗Δʱ
ݸਓʹͱͬͯɺඪʗతͷ۩ମԽ͕ॏཁʹͳ͖͍ͬͯͯΔ ྫ͑ ʰαʔϏε։ൃʹػցֶशΛར༻͢Δதن dਓ ͷݱͰɺཱࣗͯ͠ՁΛੜΈग़ͤΔΤϯδχΞʹͳΔʱͱ͔
૯߹֨ಆٕͱͯ͠ͷػցֶश Ұํ͔֬ʹݱͰΔ͖͜ͱଟ͍ ͔͠ݱʹΑͬͯҟͳΔͷͰɺ ݄ฒΈ͕ͩ ຊͰֶͳ͍͜ͱ͕ଟ͍ Γ࣮Ͱػցֶशʹ৮ΕΔͷ͕ۙಓ
σʔλੳίϯϖྑ͍ ʰݶΒΕͨظؒͷதͰσʔλΛੳ͠ɺείΞΛܧଓతʹվળ͢Δʱ ·͋·࣮͋ͬΆ͍
·ͱΊ ʰΛࢭΊͳ͍ػցֶशͷΓํʱ αʔϏεͷ࣮ݱखஈͱͯ͠ͷػցֶशʹର͢Δظӈݞ্͕Γ ݱͱͯ͠ظʹԠ͑ଓ͚͍͖͍ͯͨͰ͢Ͷɻ
8FSFIJSJOH IUUQTDPPLQBEKPCT