Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習をスモールスタートさせる方法 / small machine learning
Search
Yuichiro Someya
November 06, 2018
Programming
3
2.1k
機械学習をスモールスタートさせる方法 / small machine learning
https://d3m.connpass.com/event/104858/
Yuichiro Someya
November 06, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.6k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
350
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
How we use GPUs in Cookpad
ayemos
0
180
Other Decks in Programming
See All in Programming
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
640
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
7
1.1k
今更考える「単一責任原則」 / Thinking about the Single Responsibility Principle
tooppoo
0
430
並行開発のためのコードレビュー
miyukiw
2
1.8k
JPUG勉強会 OSSデータベースの内部構造を理解しよう
oga5
2
190
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
180
今、アーキテクトとして 品質保証にどう関わるか
nealle
0
160
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
700
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.5k
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1.1k
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
1k
Rails Girls Tokyo 18th GMO Pepabo Sponsor Talk
yutokyokutyo
0
140
Featured
See All Featured
Writing Fast Ruby
sferik
630
62k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Fireside Chat
paigeccino
41
3.8k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
300
How to build a perfect <img>
jonoalderson
1
5.2k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Claude Code のすすめ
schroneko
67
210k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
370
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
250
Transcript
ػցֶशΛεϞʔϧελʔτ ͤ͞Δํ๏ ΫοΫύουגࣜձࣾછ୩༔Ұ %BUB%SJWFO%FWFMPQFS.FFUVQ
ࣗݾհ છ୩༔Ұ<BZFNPT> ΫοΫύουגࣜձࣾ৽ଔೖࣾ ݚڀ։ൃ෦ΤϯδχΞ ػցֶशج൫ɺը૾ೝࣝܥͷݚڀ։ൃ
ΫοΫύουͱػցֶश ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ࢲ͕ଐ͞Εͨͷಉ࣌ظ ໊࣌ͷϝϯόʔ
݄ݱࡏࠃʹ໊ ւ֎ʹ໊ ʰສͷϨγϐσʔλΛ׆༻͠ɺϢʔβʔʹՁΛಧ͚Δʱ
ࠓͷτϐοΫ ػցֶश ओʹਂֶश Λ εϞʔϧελʔτͤ͞Δํ๏ ͳͥεϞʔϧελʔτ͕ඞཁ͔ Ͳ͏Δͷ͔
ࠓͷτϐοΫ ٕज़ʗέʔεελσΟগͳΊɺ ίϯηϓτଟΊͷʹͳΓ·͢ աڈʹٕͨ͠ज़తͳͪ͜Β IUUQTTQFBLFSEFDLDPNBZFNPT
ਂֶशͱεϞʔϧελʔτ
ਂֶशͱεϞʔϧελʔτ 4NBMMTUBSU εϞʔϧελʔτ 4UBSUTNBMM
lUIJOLJOHCJH TUBSUJOHTNBMM BOETDBMJOHGBTUz IUUQTKJNDBSSPMMDPNJOOPWBUJPOUIJOLCJHTUBSUTNBMMTDBMFGBTU
5IJOLCJHJEFOUJGZUIFMPOHUFSNUSBOTGPSNBUJWFUSFOET JODMVEJOHTJHOJpDBOUJOEVTUSZDIBOHF CVTJOFTTNPEFM EJTSVQUJPO ྫ͑ɺʮσΟʔϓϥʔχϯάΛ͍ͬͯ͘ʯͱܾΊΔ
4UBSUTNBMM1JDLBOVNCFSPGTNBMM FYQFSJFOUJBM PSJFOUBUFEQSPKFDUTUPCFHJO5IJTXJMMHJWFZPVCFUUFS EFQUIPGJOTJHIU ͍ͬͯͨ͘Ίʹখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ
4DBMFGBTU%FUFSNJOFXIJDIBSFBTOFFEUPCFUBDLMFE pSTUJOUFSNTPGNPWJOHGPSXBSE%FWFMPQUIFBCJMJUZUP UBLFZPVSbQSPUPUZQJOH`PGTLJMMTFOIBODFNFOUGSPNUIF TNBMMTDBMFQSPKFDUTJOUPGVMMqFEHFEPQFSBUJPOT ༗ͳϓϩδΣΫτΛબͼɺຊ֨తʹՔಇͤ͞Δ
5IJOLCJH ྫ͑ ʮਂֶशΛ͍ͬͯ͘ʯͱܾΊΔ 4UBSUTNBMMখ͍͞ϓϩδΣΫτ ࣮ݧ Λ͜ͳ͠ɺֶͿ 4DBMFGBTU༗ͳϓϩδΣΫτΛຊ֨తʹՔಇͤ͞Δ
ਂֶशͱ4UBSUTNBMM 4UBSUTNBMMখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ ਂֶशͱ4UBSUTNBMMͷ૬ੑ͕͍͍ͱࢥΘͤΔ ৽ٕज़Ͱ͋ΓɺԿ͕ͲΕ͘Β͍Ͱ͖Δͷ͔प͞Ε͍ͯͳ͍ ෦తࢼߦࡨޡ͕ඞཁ
લྫͳ͍ͷͰɺޭ ྫϢʔβʔͷՁʹܨ͕Δ ͢Δͷ͔͔Βͳ͍ ֎෦తʏ ٕज़ελοΫͱͯ͠ݟͯૣख़Ͱ͋Δ ӡ༻ͷٕज़తशख़͕ඞཁ
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC .-0QTͰ ͕ ղܾͰ͖ͦ͏ͳ
ͱ͜ΖͰ.-0QTͱ ڪΒ͘%FW0QTಉ༷͕ͩ ·ͩఆٛෆ໌ྎ ֶशΞϧΰϦζϜҎ֎ʁ %FW0QTͷ.-൛ʁ ػցֶश͕ɺιϑτΣΞ։ൃࣄۀʹ͓͍ͯՁΛੜΈग़͢͜ͱͷͰ͖Δ
ٕज़ελοΫͰ͋Γଓ͚ΔͨΊʹඞཁͳٕज़ ʰӡ༻ίετͷݮʱ͚͕ͩతͰͳ͍ ྫਂֶशΛεϞʔϧελʔτͤ͞Δҝͷ.-0QT
͜͜·Ͱ·ͱΊ ਂֶशΛεϞʔϧελʔτ͍ͤͨ͞ ͦͷͨΊʹ.-0QTͷϓϥΫςΟεΛ׆͔ͤͦ͏
εϞʔϧελʔτͷͨΊͷ.-0QT ΫοΫύουͷ߹
ܭࢉثڥ ݄ͷ ݚڀ։ൃ෦һਓ དྷि͔ΒΠϯλʔϯΛਓड͚ೖΕ "84ຊ൪ΞΧϯτʹྑͷ(16Πϯελϯε HYMBSHF ͕
৽ن࡞ͷʹίϛϡχέʔγϣϯ͕ൃੜ ݚڀ։ൃ༻ΞΧϯτΛൃߦ͠ɺӡ༻ͷੵۃతͳԽ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ .-0QT
ػցֶशج൫ͱ4UBSUTNBMM ػցֶशج൫·ͨ৽͍͠ྖҬ4UBSUTNBMM͕ඞཁ ඞཁͳͷج൫ٕज़ͷεϞʔϧͳࢼߦࡨޡ ྫ͑ج൫୲Λ3%ʹஔͯ͠ΈΔ LVCFqPXͳͲͷϓϥοτϑΥʔϜ৫γνϡΤʔγϣϯ ͱͷ૬ੑ͕͋Δ
ՄೳͰ͋Ε ੵۃతʹࢼ͢ɺͬͯΈΔͱΑͦ͞͏
༨ஊʙݕࡧγεςϜʹֶͿʙ ʮσʔλͷྲྀΕ͕͋ΓɺγεςϜ͕σʔλͱڞʹ͢ΔΑ͏ͳγ εςϜʯͱ͍͑ʁ ݕࡧγεςϜͷӡ༻ϓϥΫςΟε͔Β ֶͿ͜ͱଟͦ͏ ΠϯσοΫεͷߏஙɺࣙॻσʔλͷཧ IUUQTXXXBNB[PODPKQ#VJMEJOH*OUFMMJHFOU4ZTUFNT-FBSOJOH&OHJOFFSJOHFCPPLEQ##82)3
·ͱΊ ਂֶशεϞʔϧελʔτ͍ͤͨ͞ ৽͍ٕ͠ज़ͷՄೳੑ ͱ੍ Λ࡞Γͳ͕ΒֶͿ εϞʔϧελʔτ .-0QTͷదͳར༻εϞʔϧελʔτΛॿ͚Δ