Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習をスモールスタートさせる方法 / small machine learning
Search
Yuichiro Someya
November 06, 2018
Programming
3
2.1k
機械学習をスモールスタートさせる方法 / small machine learning
https://d3m.connpass.com/event/104858/
Yuichiro Someya
November 06, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.5k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
340
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
How we use GPUs in Cookpad
ayemos
0
180
Other Decks in Programming
See All in Programming
JETLS.jl ─ A New Language Server for Julia
abap34
2
470
開発に寄りそう自動テストの実現
goyoki
2
1.6k
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
230
Grafana:建立系統全知視角的捷徑
blueswen
0
260
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
150
CSC307 Lecture 02
javiergs
PRO
1
710
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
150
Vibe codingでおすすめの言語と開発手法
uyuki234
0
150
Cap'n Webについて
yusukebe
0
160
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
130
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
GoLab2025 Recap
kuro_kurorrr
0
790
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Faster Mobile Websites
deanohume
310
31k
A designer walks into a library…
pauljervisheath
210
24k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Invisible Side of Design
smashingmag
302
51k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
63
Site-Speed That Sticks
csswizardry
13
1k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Building an army of robots
kneath
306
46k
A Tale of Four Properties
chriscoyier
162
23k
Transcript
ػցֶशΛεϞʔϧελʔτ ͤ͞Δํ๏ ΫοΫύουגࣜձࣾછ୩༔Ұ %BUB%SJWFO%FWFMPQFS.FFUVQ
ࣗݾհ છ୩༔Ұ<BZFNPT> ΫοΫύουגࣜձࣾ৽ଔೖࣾ ݚڀ։ൃ෦ΤϯδχΞ ػցֶशج൫ɺը૾ೝࣝܥͷݚڀ։ൃ
ΫοΫύουͱػցֶश ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ࢲ͕ଐ͞Εͨͷಉ࣌ظ ໊࣌ͷϝϯόʔ
݄ݱࡏࠃʹ໊ ւ֎ʹ໊ ʰສͷϨγϐσʔλΛ׆༻͠ɺϢʔβʔʹՁΛಧ͚Δʱ
ࠓͷτϐοΫ ػցֶश ओʹਂֶश Λ εϞʔϧελʔτͤ͞Δํ๏ ͳͥεϞʔϧελʔτ͕ඞཁ͔ Ͳ͏Δͷ͔
ࠓͷτϐοΫ ٕज़ʗέʔεελσΟগͳΊɺ ίϯηϓτଟΊͷʹͳΓ·͢ աڈʹٕͨ͠ज़తͳͪ͜Β IUUQTTQFBLFSEFDLDPNBZFNPT
ਂֶशͱεϞʔϧελʔτ
ਂֶशͱεϞʔϧελʔτ 4NBMMTUBSU εϞʔϧελʔτ 4UBSUTNBMM
lUIJOLJOHCJH TUBSUJOHTNBMM BOETDBMJOHGBTUz IUUQTKJNDBSSPMMDPNJOOPWBUJPOUIJOLCJHTUBSUTNBMMTDBMFGBTU
5IJOLCJHJEFOUJGZUIFMPOHUFSNUSBOTGPSNBUJWFUSFOET JODMVEJOHTJHOJpDBOUJOEVTUSZDIBOHF CVTJOFTTNPEFM EJTSVQUJPO ྫ͑ɺʮσΟʔϓϥʔχϯάΛ͍ͬͯ͘ʯͱܾΊΔ
4UBSUTNBMM1JDLBOVNCFSPGTNBMM FYQFSJFOUJBM PSJFOUBUFEQSPKFDUTUPCFHJO5IJTXJMMHJWFZPVCFUUFS EFQUIPGJOTJHIU ͍ͬͯͨ͘Ίʹখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ
4DBMFGBTU%FUFSNJOFXIJDIBSFBTOFFEUPCFUBDLMFE pSTUJOUFSNTPGNPWJOHGPSXBSE%FWFMPQUIFBCJMJUZUP UBLFZPVSbQSPUPUZQJOH`PGTLJMMTFOIBODFNFOUGSPNUIF TNBMMTDBMFQSPKFDUTJOUPGVMMqFEHFEPQFSBUJPOT ༗ͳϓϩδΣΫτΛબͼɺຊ֨తʹՔಇͤ͞Δ
5IJOLCJH ྫ͑ ʮਂֶशΛ͍ͬͯ͘ʯͱܾΊΔ 4UBSUTNBMMখ͍͞ϓϩδΣΫτ ࣮ݧ Λ͜ͳ͠ɺֶͿ 4DBMFGBTU༗ͳϓϩδΣΫτΛຊ֨తʹՔಇͤ͞Δ
ਂֶशͱ4UBSUTNBMM 4UBSUTNBMMখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ ਂֶशͱ4UBSUTNBMMͷ૬ੑ͕͍͍ͱࢥΘͤΔ ৽ٕज़Ͱ͋ΓɺԿ͕ͲΕ͘Β͍Ͱ͖Δͷ͔प͞Ε͍ͯͳ͍ ෦తࢼߦࡨޡ͕ඞཁ
લྫͳ͍ͷͰɺޭ ྫϢʔβʔͷՁʹܨ͕Δ ͢Δͷ͔͔Βͳ͍ ֎෦తʏ ٕज़ελοΫͱͯ͠ݟͯૣख़Ͱ͋Δ ӡ༻ͷٕज़తशख़͕ඞཁ
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC .-0QTͰ ͕ ղܾͰ͖ͦ͏ͳ
ͱ͜ΖͰ.-0QTͱ ڪΒ͘%FW0QTಉ༷͕ͩ ·ͩఆٛෆ໌ྎ ֶशΞϧΰϦζϜҎ֎ʁ %FW0QTͷ.-൛ʁ ػցֶश͕ɺιϑτΣΞ։ൃࣄۀʹ͓͍ͯՁΛੜΈग़͢͜ͱͷͰ͖Δ
ٕज़ελοΫͰ͋Γଓ͚ΔͨΊʹඞཁͳٕज़ ʰӡ༻ίετͷݮʱ͚͕ͩతͰͳ͍ ྫਂֶशΛεϞʔϧελʔτͤ͞Δҝͷ.-0QT
͜͜·Ͱ·ͱΊ ਂֶशΛεϞʔϧελʔτ͍ͤͨ͞ ͦͷͨΊʹ.-0QTͷϓϥΫςΟεΛ׆͔ͤͦ͏
εϞʔϧελʔτͷͨΊͷ.-0QT ΫοΫύουͷ߹
ܭࢉثڥ ݄ͷ ݚڀ։ൃ෦һਓ དྷि͔ΒΠϯλʔϯΛਓड͚ೖΕ "84ຊ൪ΞΧϯτʹྑͷ(16Πϯελϯε HYMBSHF ͕
৽ن࡞ͷʹίϛϡχέʔγϣϯ͕ൃੜ ݚڀ։ൃ༻ΞΧϯτΛൃߦ͠ɺӡ༻ͷੵۃతͳԽ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ .-0QT
ػցֶशج൫ͱ4UBSUTNBMM ػցֶशج൫·ͨ৽͍͠ྖҬ4UBSUTNBMM͕ඞཁ ඞཁͳͷج൫ٕज़ͷεϞʔϧͳࢼߦࡨޡ ྫ͑ج൫୲Λ3%ʹஔͯ͠ΈΔ LVCFqPXͳͲͷϓϥοτϑΥʔϜ৫γνϡΤʔγϣϯ ͱͷ૬ੑ͕͋Δ
ՄೳͰ͋Ε ੵۃతʹࢼ͢ɺͬͯΈΔͱΑͦ͞͏
༨ஊʙݕࡧγεςϜʹֶͿʙ ʮσʔλͷྲྀΕ͕͋ΓɺγεςϜ͕σʔλͱڞʹ͢ΔΑ͏ͳγ εςϜʯͱ͍͑ʁ ݕࡧγεςϜͷӡ༻ϓϥΫςΟε͔Β ֶͿ͜ͱଟͦ͏ ΠϯσοΫεͷߏஙɺࣙॻσʔλͷཧ IUUQTXXXBNB[PODPKQ#VJMEJOH*OUFMMJHFOU4ZTUFNT-FBSOJOH&OHJOFFSJOHFCPPLEQ##82)3
·ͱΊ ਂֶशεϞʔϧελʔτ͍ͤͨ͞ ৽͍ٕ͠ज़ͷՄೳੑ ͱ੍ Λ࡞Γͳ͕ΒֶͿ εϞʔϧελʔτ .-0QTͷదͳར༻εϞʔϧελʔτΛॿ͚Δ