Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アットホームな分析基盤の作り方 / Homemade Machine Learning Too...
Search
Yuichiro Someya
July 23, 2018
Programming
1
1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
分析基盤トーク #1
https://daft.connpass.com/event/93036/
Yuichiro Someya
July 23, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.6k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
350
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
How we use GPUs in Cookpad
ayemos
0
180
Other Decks in Programming
See All in Programming
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2.4k
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
120
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
850
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
530
Python札幌 LT資料
t3tra
7
1.1k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
AIエージェントの設計で注意するべきポイント6選
har1101
7
3.3k
Data-Centric Kaggle
isax1015
2
720
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
140
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.7k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
160
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
670
Featured
See All Featured
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
160
Agile that works and the tools we love
rasmusluckow
331
21k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
100k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
44
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
110
Docker and Python
trallard
47
3.7k
KATA
mclloyd
PRO
34
15k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
200
Producing Creativity
orderedlist
PRO
348
40k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
130
Transcript
ΞοτϗʔϜͳ ੳج൫ͷ࡞Γํ BZFNPT
ࣗݾհ છ୩༔Ұ<:VJDIJSP4PNFZB> ౦ژۀେֶେֶӃܭࢉֶम࢜ ΫοΫύουגࣜձࣾݚڀ։ൃ෦ ϦαʔνΤϯδχΞ݄d ػցֶशج൫
Ϩγϐσʔλͷੳ UXJUUFSDPN!BZFNPT@Z HJUIVCDPNBZFNPT IUUQTXXXBZFNPTNF
ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ໊࣌ͷϝϯόʔ ݄ݱࡏࠃʹ໊ ւ֎ʹ໊
ΫοΫύουͱػցֶश .ZϑΥϧμ ͓ؾʹೖΓػೳ ͷϨγϐΛࣗಈΧςΰϦྨ ʮྉཧ͖Ζ͘ʯεϚʔτϑΥϯͷྉཧࣸਅΛΧϨϯμʔܗࣜ ͰৼΓฦΓ ࡐྉ໊ͷਖ਼نԽ
ʑ ৄ͘͠IUUQTUFDIMJGFDPPLQBEDPN
BHFOEB ΫοΫύουͷੳج൫ͷհ ੳج൫ͷ͜Ε͔Β
ج൫հͦͷ;PPFZ
None
ੳͱ࣮ݧΛ֤͕ࣗࣗ༝ʹߦ͏ͨΊͷ࠷ݶͷج൫
ج൫հͦͷ̍;PPFZ ܭࢉػڥߏங༻$IBU#PU ܭࢉػڥͷ࡞ʗ্ཱͪ͛ʗఀࢭʗআ ΞΠυϧঢ়ଶͷܭࢉػΛࣗಈఀࢭ
None
$6%" DV%// $6%" DV%// %FFQ-FBSOJOH".*+BO FUD 0VUHPJOH8FCIPPLT
TMBDL@VJE6 DPNNBOEDSFBUFXPSLCFODI MBNCEB*OWPLF 71$ 4VCOFU /BNFλά ڥಛ༗ͷઃఆ͜͜ͰΔ ΠϯελϯεʹATMBDL@VJEAΛ λά͚ͯ͠ॴ༗ऀΛཧ͢Δ DSFBUFXPSLCFODI ;PPFZ
ATTIBZFNPTXPSLCFODIEOTDPNA ;PPFZ *ODPNJOH8FCIPPLT TTI
;PPFZ 4UPQ ΞΠυϧͳΠϯελϯεΛࣗಈఀࢭ
ج൫հͦͷ̍;PPFZ ͷԾ*NBHF %FFQ-FBSOJOH".* Λར༻Մೳ Πϯελϯε࡞ͷೖΓޱΛҰຊԽ ωοτϫʔΫɺηΩϡϦςΟपΓͷࡉ͔͍ઃఆΛٵऩ
ར༻ଆ*NBHFΛ൪߸ͰબͿ͚ͩ ࣾΠϯϑϥͷมԽʹରͯ͠πʔϧͷΞοϓσʔτͰରԠ ւ֎ͷϝϯόʔར༻ IUUQTBXTBNB[PODPNKQNBDIJOFMFBSOJOHBNJT
ج൫հͦͷ̍;PPFZ ֤͕ࣗSPPUΛऔΕΔΠϯελϯεΛ͍ग़͢ গʑલ࣌తʁ ॊೈੑߴ͘ɺ࣮ݧஈ֊ͷڥͱ͍ͯ͠৺͕Α͍ ࣗಈఀࢭ͋ΔͷͰ֤ࣗ҆৺ͯ͠ඞཁͳ্ཱ͚ͩͪ͛ΒΕΔ
ʮ࣮ݧʯΛؚΊαϙʔτ͢Δڞ௨ج൫Λ࣋ͨͳ͍ͷͰ ʮ࣮ݧʯʮຊ൪ʯͷ1PSUBCJMJUZผ్ิڧ͢Δඞཁ͕͋Δ
ج൫հͦͷσʔλج൫
None
͍ΘΏΔ%8) 42-ϕʔεͷ&5-ج൫
σʔλج൫ ͜ΕओʹผνʔϜ σʔλج൫άϧʔϓ ʹΑΔཧ "NB[PO3FETIJGUʹΑΔ%8)ߏங .Z42-3FETIJGUͷΠϯϙʔτδϣϒΛίʔυཧ
ৄ͘͠IUUQTUFDIMJGFDPPLQBEDPNFOUSZ
σʔλج൫ͷར༻ঢ়گ %8)͕ਆ &5- ࣮ݧͷʹ֤͕ࣗߦ͍ɺεΫϦϓτԽ͢Δࣄ͕ଟ͍ ڞ௨&5-ج൫ͷར༻ɺதؒσʔλͷڞ༗ͳͲʹର͢Δχʔζ ͦ͜·Ͱେ͖͘ͳ͍
ݱঢ়
ج൫հͦͷίʔυཧ
ج൫հͦͷίʔυཧ ج൫ʁ DPPLJFDVUUFSEBUBTDJFODF ࣾGPSL Λར༻ ϓϩδΣΫτߏͷςϯϓϨʔτ
ATSDEBUBA ATSDNPEFMAσʔλੜɺֶशεΫϦϓτ AEBUBA ANPEFMTAσʔλɺϞσϧ HJUʹDIFDLJOͤͣɺ4ͱTZOD͢Δ ANBLFTZOD@EBUB@UP@TA
ج൫հͦͷίʔυཧ IUUQTHJUIVCDPNEPDLFSTDJFODFDPPLJFDVUUFSEPDLFS TDJFODF DPPLJFDVUUFSEBUBTDJFODFΛࢀߟʹͨ͠ςϯϓϨʔτ EPDLFSΛར༻͠ɺϓϩδΣΫτͷ࣮ݱੑΛ͞ΒʹߴΊΔ OPUFCPPLͷ্ཱͪ͛
1PSUGPSXBSEߦ͏UBSHFU
ج൫·ͱΊ ݱঢ়౷ҰԽ͞ΕͨػցֶशϓϥοτϑΥʔϜΛར༻͍ͯ͠ͳ͍ ࣗπʔϧͷΈ߹Θͤ %8)Ͱ͓͓ΉͶճ͍ͬͯΔ ج൫ͦͷͷͷཧίετͳͲߟྀͭͭ͠ਐΊͨ݁Ռ ݱঢ় ൺֱతΧδϡΞϧͳӡ༻ͱͳ͍ͬͯΔ
ੳج൫ͷࠓޙ ʙΞοτϗʔϜͳੳج൫͔Βେ౷Ұج൫ͷಓͷΓʙ ͔͜͜Βߟ
ੳج൫ͷࠜຊత՝ (FOFSJDBOE&YUFOTJCMF
ੳج൫ͷࠜຊత՝ 5'9"5FOTPS'MPX#BTFE1SPEVDUJPO4DBMF.BDIJOF-FBSOJOH1MBUGPSN ΑΓ l5IFNBDIJOFMFBSOJOHQMBUGPSNNVTUCFHFOFSJD FOPVHIUPIBOEMFUIFNPTUDPNNPOTFUPGMFBSOJOH UBTLTBTXFMMBTCFFYUFOTJCMFUPTVQQPSUPOFP⒎ BUZQJDBMVTFDBTFTz ҙ༁ ػցֶशج൫แׅత͔֦ͭுՄೳͰ͋Δ͖
(FOFSJDBOE&YUFOTJWF ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶशʱ ͠Α͏ͱ͍ͯ͠Δ (FOFSJDͳΔ͘ଟ͘ͷϢʔεέʔεʹ ಁաతʹ ରԠ͍ͨ͠ ྑ͍நԽͱ"1*֦ॆͷؤுΓ͖ͬͱେม
&YUFOTJWFྫ֎తͳέʔεʹରͯ͠ গͳ͍࿑ྗͰ ରԠ͍ͨ͠ ҙͷίʔυΛࠩ͠ࠐΊΔॴΛ༻ҙ͢Δɺͱ͔ʜ
(FOFSJDBOE&YUFOTJWF αϙʔτ͢ΔͷόϦΤʔγϣϯͱͷઓ͍ଓ͘ ྨʗճؼ͘Β͍ͷநԽ͔Β࿙Εͯ͠·͏෦͕ແࢹͰ͖ͳ͍ ྔʹͳ͍ͬͯΔ ཁग़య ج൫ͱ͍͏ܕʹΊΔ͜ͱͰࣦΘΕΔॊೈੑͷ૯ྔΛ༧ଌ͢Δ͜
ͱग़དྷͳ͍ ཁग़య
ߟ ج൫େมͳͣͳͷͰ ࡞Δਓͱ͏ਓ͕૿͑ͯίϛϡχςΟ͕ ͢Δඞཁ͕͋Δ ҰํɺνʔϜͷεέʔϧʹ࠷దԽ͞ΕͨπʔϧΛར༻ʗࣗͯ͠ࡁ·ͤ Δͱ͍͏બࢶ͋Δ ͦͷΑ͏ͳݱ͔Β౷Ұ͞Εͨੳج൫ʹΑͬͯͨΒ͞ΕΔϝϦο
τ͕Πϝʔδ͠ʹ͍͘
ߟ ͷͰɺ લड़ͨ͠Α͏ͳ՝Λ্๊͑ͨͰ ੳج൫͕ଧͪग़͢ϝϦοτԿ͔ɺΛߟ͑Δ ͷ͕େࣄͩͱࢥ͏ ػցֶशΛج൫ͳ͠Ͱεέʔϧͤ͞Δͷ͕ ෆՄೳʹۙ͘ ͍͔͠Βɺ
ಋೖʹ͏ίετ՝Λड͚ೖΕͯͰج൫ʹैͬͯ։ൃ͢Δͱ͍͏બΛ͖͢ɺ ͳͷ͔ εέʔϧ͕͍͠ͱ͍͏࣮ײΛ ۀքશମ͕ ࠓͷ࣌Ͱ ಘ͍ͯΔͷ͔ ڞ௨ج൫Խ͢Δ͜ͱʹΑͬͯಘΒΕΔߴڃͳػೳ "#ςετɺࢹͳͲ ͷັྗΛԡ͠ग़͢ͷ͔ ʑ
ߟ ʮσʔλͷྲྀΕ͕͋ΓɺγεςϜ͕σʔλͱڞʹ͢ΔΑ͏ͳγε ςϜʯ·ͰࢹΛ͛Δͱʜ ػցֶशΛ༻͍ͳ͍ ݕࡧΤϯδϯٞͷର ͱͳΔͷ͕ඞવ ݕࡧΤϯδϯࣗମಠࣗਐԽͯ͠ΔͷͰ৽ͨͳ
ιϦϡʔγϣϯΛଧͪग़͢༨ͳ͍͔͠Εͳ͍͕ʜ ͱ͍͑χϡʔϥϧݕࡧΈ߹ΘͤͨγεςϜʹର͢Δ χʔζࠓޙ૿͍͑ͯͣ͘ ͜͜·Ͱ&YUFOTJCMFʹͳΕΔ͔ ͳΔ͖͔ IUUQTXXXBNB[PODPKQ#VJMEJOH*OUFMMJHFOU4ZTUFNT-FBSOJOH&OHJOFFSJOHFCPPLEQ##82)3
·ͱΊ ΫοΫύουݚڀ։ൃ෦͕ར༻͍ͯ͠Δੳج൫Λհ ෦ʹج൫୲͕͍ͯɺϢʔεέʔεʹরΒ͠߹Θͤͳ͕Βۀվળ ݱঢ়ࣗπʔϧͷΈ߹Θͤ %8)Ͱ͓͓ΉͶຬ ੳج൫ͷ͜Ε͔Β
ݱͱͯͨ͘͠͞ΜͷϢʔεέʔεΛൃ৴͍ͯ͘͠ ػցֶशͷ๊͑Δ՝Λ۩ମԽ͠ɺϝοηʔδͱ͍ͯ͑ͯ͘͠ͷ͕ ॏཁͰେมͦ͏