Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIが変えるソフトウェア開発__未来のアジャイルチームとは__.pdf
Search
buchirei
March 19, 2025
Technology
0
360
AIが変えるソフトウェア開発__未来のアジャイルチームとは__.pdf
buchirei
March 19, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
100
View Transition API
shirakaba
1
850
RubyKaigi 2025でプロポーザルが初めて採択されるまでにやったこと
yuuu
1
290
製造業の会計システムをDDDで開発した話
caddi_eng
3
810
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
270
[CATS]Amazon Bedrock GenUハンズオン座学資料 #2 GenU環境でRAGを体験してみよう
tsukuboshi
0
120
Symfony in 2025: Scaling to 0
fabpot
2
100
ClineにNext.jsのプロジェクト改善をお願いしてみた / 20250321_reacttokyo_LT
optim
1
1.2k
AWS のポリシー言語 Cedar を活用した高速かつスケーラブルな認可技術の探求 #phperkaigi / PHPerKaigi 2025
ytaka23
7
1.4k
ウェブアクセシビリティとは
lycorptech_jp
PRO
0
160
PHPStan をできる限り高速化してみる
colopl
0
240
「エンジニアマネージャー」の役割を担っている / 担ってみたい方へのキャリアパスガイド
coconala_engineer
1
220
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
690
Into the Great Unknown - MozCon
thekraken
35
1.7k
For a Future-Friendly Web
brad_frost
176
9.6k
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
Git: the NoSQL Database
bkeepers
PRO
429
65k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Building an army of robots
kneath
304
45k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Designing for humans not robots
tammielis
250
25k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
スクラム×AI AIの力でスプリントを駆け抜ける 2025.03.14 Fri. AIが変えるソフトウェア開発〜未来のアジャイルチームとは?〜 溝渕 嶺 SmartHR(EM)
株式会社SmartHR エンジニアリングマネージャー 溝渕 嶺 SIerで官公庁向けシステムや金融アプリを開発 2024年6月にSmartHRにジョイン キャリア台帳チームにてスクラム導入を支援
本日お話すること ・なぜスクラムに AIを導入するのか? ・AI × スクラムイベントの実践例 ・今後の展望
なぜスクラムに AIを導入するのか?
Complex Adaptive Systems 個々の要素が相互作用しながら適応・進化し、全体と して予測困難な振る舞いをするシステム
Complex Adaptive Systems 自己組織化 集中管理なしで、システム自体が適応しながら秩序を生み出す。 適応 環境の変化に応じて構成要素が進化する。 非線形性 小さな変化が大きな影響を与えることがある。 創発
個々の構成要素の相互作用から予測できない新しいパターンが 生まれる。
スクラムでは? 自己組織化 スクラムチームが自律的に役割を分担し、課題を解決する。 適応 顧客のニーズや市場の変化に応じてバックログを更新する。 非線形性 1つの改善(例 : デイリースクラムの時間短縮)が、チームのモチ ベーションや生産性に大きな影響を与える。
創発 短期間で繰り返されるスプリントの中で、最初は想定していなかっ たイノベーションが生まれる。
AIでは? 自己組織化 ニューラルネットワークは、学習データに基づいて自律的にパター ンを抽出する。 適応 環境の変化に応じてモデルを更新し、適応する能力を持つ。 非線形性 ニューラルネットワークの学習プロセスは非線形であり、小さな データの変化が大きな影響を与えることがある。 創発
AIが学習データから予測できなかったパターンを発見することがあ る(例: GPT-4が創造的な文章を生成できる)。
スクラムが生まれた背景 https://www.scruminc.com/subsumption-architecture-how-irobot-enabled-scrum/
スクラムが生まれた背景 https://www.scruminc.com/subsumption-architecture-how-irobot-enabled-scrum/
スクラムと AIって相性良さそう!
なぜスクラムに AIを導入するのか?
こんな経験ありませんか? • リリース直前でステークホルダーとの期待値にズレが。。。 • 突発的な要求でスプリントゴールの達成が絶望的。。。 • レトロで上がった NextActionがうまくいかない。。。
ベイジアンサプライズ • 予測と現実の乖離によって発生する認知的・計算的な負荷 ツァイガルニク効果 • 未完了課題についての記憶は、完了課題についての記憶に 比べて想起されやすい
AI導入によって • 未完了の課題を可視化し、やるべきことを提案して くれる。 • チームは完了に向けてエネルギーを注ぐことができ る。
https://youtu.be/0kgWbrN6v9s?si=XI0RprkbD2N8dj34
AI × スクラムイベントの実践例
スプリントレビュー
スプリントレビューの目的 • チームとステークホルダーが協力して価値を最大化する ◦ 「成果を発表する場」ではなく、「 FBから次にどうすべきか を決める場」 ◦ ステークホルダーと対話し、方向性の調整が重要
現実問題 • ステークホルダーから適切な FBを受けるためには 相応の準備が必要 • 準備が大変で、結局チームからのデモになり対話 が減る
さっそくAIを使ってみよう!
その前に
サザーランド博士曰く • ChatGPTはインターネットで訓練されている • インターネット上の 58%から68%のチームが遅延 し、予算超過で、顧客が不満を持っている • つまり、ChatGPTはスクラムを知らない
どうする?
Scrum Sage: Zen Edition https://chatgpt.com/g/g-pajO1fBss-scrum-sage-zen-edition
プロンプトを書いてみよう
アウトプット
アウトプット
レトロスペクティブ
レトロスペクティブの目的 • スプリントの振り返りを通じて、チームの働き方をより良くする ◦ 「うまくいったこと」「改善すべきこと」「次にどうするか」を 明確にすることが重要 ◦ 実際にアクションにつなげることが成功の鍵
現実問題 • 改善アクションが抽象的で、実行されない • 場の雰囲気に左右される • 議論が主観的になりやすい
やってみよう!
None
微妙かも。。。? 以下の課題を理解していない ・勉強会を主催するための資料等の準備が大変 ・他の業務を優先して開催が先延ばしされている
AIはチームメンバーです
サザーランド博士曰く • AIと働くために必要なのはコラボレーション • AIが優れていない場合はジュニア開発者として扱 い、優れている場合はチーム内でふさわしい熟練 度の開発者として扱う
レトロスペクティブの流れ 課題の深掘り ↓ 課題に対する NextActionの検討
レトロスペクティブの流れ 課題の深掘り ↓ 課題に対する NextActionの検討 これをやってみる
インプット
アウトプット
レトロスペクティブの流れ 課題の深掘り ↓ 課題に対する NextActionの検討 これをやってみる
インプット
インプット AIが提示した質問に対する回答
アウトプット
アウトプット
アウトプット
AIを導入するポイント • AIはチームメンバーである • 人間+AI+より良いプロセス
リファインメント
リファインメントの目的 • プランニング時にバックログからアイテムを選択で きる状態にする
現実問題 • リファインメントの時間を確保できず、プランニング に時間がかかる • 分割したが粒度が大きくマージまで時間がかかる • 受け入れ基準が曖昧で、ゴールがずれる
インプット
アウトプット
うまくいかなかったこと • レビュー観点がチームごとに異なるので、プロンプ トの使い回しは厳しそう • 制限時間内で AIへレビュー依頼 -> 待ち ->
実行を 回すのは大変(リファインメントに限らず)
さいごに
全体のまとめ • AIを組み込むことで課題を可視化し、チームが完了 に向けてエネルギーを注げる • AIをチームメンバーとして捉え、コラボレーションを 通じて作業を進める
今後の展望 • メンバーが自然と AIを利用できる状態にする • チームのコンテキストに合わせたモデルを作成し、 インプットの負荷を軽減する
最近のレトロでは AI関連の話題が増えてきた
ご清聴ありがとうございました