Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ミクシィ/AI・ロボット事業部の取り組み
Search
cfiken
July 03, 2019
Technology
2
990
ミクシィ/AI・ロボット事業部の取り組み
2019/07/03 第1回 NLP/CV最先端勉強会
cfiken
July 03, 2019
Tweet
Share
More Decks by cfiken
See All by cfiken
[2023/11/18] Knowledge-Augmented Language Model Verification @LLM x 検索論文読み会
cfiken
1
520
ACL2020 対話システムの評価指標 [nlpaper.challenge 2020/10/18]
cfiken
1
1.9k
[2020/05/15] nlpaper.challenge BERT応用勉強会 テキスト生成の評価 × BERT
cfiken
3
8.5k
[ACL2019網羅的サーベイ報告会資料] Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
cfiken
1
1.5k
Class Imbalanced に対するアプローチ Striking the Right Balance with Uncertainty @CVPR2019網羅的サーベイ報告会
cfiken
1
940
nlpaper.challenge 外部知識に基づく応答生成サーベイ
cfiken
6
1.6k
Other Decks in Technology
See All in Technology
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
250
疎結合でスキーマ駆動開発を実現するイベントバスの設計
hacomono
PRO
0
130
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.2k
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
470
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
750
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
590
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
480
今日から始めるAWSセキュリティ対策 3ステップでわかる実践ガイド
yoshidatakeshi1994
0
140
エンジニアが主導できる組織づくり ー 製品と事業を進化させる体制へのシフト
ueokande
1
130
はじめてのOSS開発からみえたGo言語の強み
shibukazu
4
1k
AWSで始める実践Dagster入門
kitagawaz
1
760
組織規模に応じたPlatform Engineeringの実践
hacomono
PRO
0
110
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Statistics for Hackers
jakevdp
799
220k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
How STYLIGHT went responsive
nonsquared
100
5.8k
Gamification - CAS2011
davidbonilla
81
5.4k
How to train your dragon (web standard)
notwaldorf
96
6.2k
How GitHub (no longer) Works
holman
315
140k
Building Applications with DynamoDB
mza
96
6.6k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
820
Transcript
ミクシィでの取り組み紹介 2019/07/03 株式会社ミクシィ AI・ロボット事業部 Kentaro Nakanishi
自己紹介 Kentaro Nakanishi @cfiken ミクシィ: AI・ロボット事業部 昨年4月まで iOS エンジニア (マッチングアプリ
Poiboy) 今は AI 関連新規事業 最近は nlpaper と Kaggle と ゲームを両立させたい
ミクシィグループ • XFLAG ◦ モンスト ◦ ファイトリーグ • みてね •
SNS mixi • minimo • スマートヘルス • ...
ミクシィグループでの機械学習に関する取り組み • XFLAG での ゲームAI (強化学習など) ◦ https://speakerdeck.com/mixi_engineers/machine-learning-in-fight-league • みてねでの画像/動画処理
◦ https://mixi.connpass.com/event/115664/ • mixi での不適切コンテンツ検出 ◦ https://medium.com/mixi-developers/mixi-20190110-d1cde81cf37c • その他いろいろ
AI・ロボット事業部??
AI・ロボット事業部での取り組み • 雑談対話ロボットの制作 • 特に対話部分にフォーカス • ハードも作ります • 新規事業としてやっているのでプロダクトについてはあ んまり話せません
AI・ロボット事業部での取り組み • PO 合わせて 12人のチームで開発 • エンジニア: 7人 ◦ 1人はまだ
Deep ヒヨコ (私) ◦ 1人は Deep 系スーパーマン (私目線) • 日本語対話データも自社で収集 ◦ 100万オーダーのターン
We are hiring!!!!!!!!
AI・ロボット事業部での取り組み • 対話モデル変遷の紹介 • 今後の課題 10分しかないのでサササッと
対話モデル変遷の紹介
対話モデル変遷 • Seq2Seq + Attention • HRED / VHRED •
Transformer • Alphabot • Policy Network (Transformer) on BERT • Policy Network XL • ???
Seq2Seq + Attention 割愛
HRED / VHRED • 対話として一問一答では成立しないため、過去の N回の 対話履歴を元に返答を行いたい • HRED (Hierarchical
Recurrent Encoder Decoder) ◦ A. Sordoni et al., 2015 • 長いコンテキストを入力可能に
HRED / VHRED • 学習が難しい: 過学習しがち, 学習時間がかなりかかる • VHRED は誰も学習が成功しなかった...
Transformer • RNN は学習に時間がかかる/難しい • Attention is All You Need
◦ A. Vaswani et al., 2017 • 実用レベルだったので RNN から乗り換え • RNN と比べて圧倒的に学習が早い ◦ PDCA 高速化 / GPUコスト減 • 会話精度も体感的には向上
Transformer (Hierarchical) • 対話モデルでは HRED のように Hierarchical に設計
Alphabot • もっと先を見据えて良い方向へ持っていく対話をしたい • AlphaGo の枠組みをヒントに設計 ◦ N ターン先まで見て良さそうな返答を選ぶ •
Policy, Reward, Alpha の3つのネットワークからなる ◦ Policy: 返答を生成 ◦ Reward: 返答を評価 ◦ Alpha: どの発言が将来的に良い報酬となるかを近似
Alphabot Policy と Reward をトレー ニングデータから学習 Policy: 発話を生成 Reward: 発話を評価
bot 同士で対話させ、 MCTS で対話を探索/評価
Alphabot MCTS の探索は時間がかか るので推論時は厳しい Alpha で MCTS の結果を近 似するようなモデルを学習 推論的には
Policy + Alpha で出力を生成 & 決める
Policy Network (Transformer) on BERT • Alphabot の枠組みは良いが、まだまだ Policy が弱い
• データ数が多くないため名詞などの知識理解が弱点 • BERT を用いることで改善
Policy Network XL • モデルが過去 N 発話分しか見ることができない ◦ コンテキスト理解に限界 ◦
内容のない対話が続くと何の話か分からなくなる • Transformer の Encoder への入力の一部を Memory Module として、対話の中で更新・保存する • Transformer-XL から着想
Policy Network XL • N (=3) 発話以前の文脈も取得可能に • Hierarchical 構造がなくなりシンプルに
• 何を記憶するかも一緒に学習
その他: with Condition • Condition として外部状況を取り込めるようなモデルを いろいろ実験中 ◦ どこで入れるか (decoder,
encoder, ...) ◦ どのように入れるか (binary, embedding, ...) ◦ 何を入れるか (ユーザ情報, 天気, 友人情報, ...)
??? • 他にも色々なモデルで試行錯誤 • 外部情報 (ユーザ情報, 今日の天気, 季節, ...) の活用
• GAN など生成モデルアプローチも実験 • ターン制でない対話 • Encoder-Decoder でない枠組み㊙も試し中 • 興味がある方は懇親会で
今後の課題
今後の課題 • まだ課題だらけ ◦ 返答生成のクオリティ ◦ モデルの評価 ◦ 記憶 ◦
レスポンスタイム ◦ 多様性 ◦ 企画意図の実現 • 興味がある方は(略)
ありがとうございました
None