Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Reinforcement Fine-tuning 基礎〜実践まで
Search
Morita
December 11, 2025
Technology
0
110
Reinforcement Fine-tuning 基礎〜実践まで
AWS re:Invent ふりかえり勉強会 クラスメソッド re:Growth 2025 福岡
https://classmethod.connpass.com/event/372977/
Morita
December 11, 2025
Tweet
Share
More Decks by Morita
See All by Morita
FSx for Lustreを使ったAIモデル開発の始め方
ch6noota
0
82
Dify で AWS を使い倒す!
ch6noota
1
780
DeepSeek for Amazon Bedrock
ch6noota
0
71
5分で学ぶ! 宣言型ポリシーの基礎からベストプラクティスまで
ch6noota
1
570
新機能 Bedrock Model Distillation 基礎〜実践まで #regrowth_fuk
ch6noota
0
630
AWS を使った生成AIの活用
ch6noota
0
840
AWS初めての方必見!初学者でも入りやすいAWSサービス3選 #devio2022
ch6noota
0
1.4k
Security Hub のマルチアカウント 管理・運用をサーバレスでやってみる
ch6noota
0
3.8k
NITKハッカソン クラウド入門
ch6noota
0
980
Other Decks in Technology
See All in Technology
AI駆動開発によるDDDの実践
dip_tech
PRO
0
440
グレートファイアウォールを自宅に建てよう
ctes091x
0
140
Overture Maps Foundationの3年を振り返る
moritoru
0
150
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
430
著者と読み解くAIエージェント現場導入の勘所 Lancers TechBook#2
smiyawaki0820
12
5.8k
Gemini でコードレビュー知見を見える化
zozotech
PRO
1
170
世界最速級 memcached 互換サーバー作った
yasukata
0
320
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
770
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
650
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
110
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
450
手動から自動へ、そしてその先へ
moritamasami
0
270
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
710
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Bash Introduction
62gerente
615
210k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Context Engineering - Making Every Token Count
addyosmani
9
490
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Transcript
2025/12/11 クラウド事業本部 コンサルティング部 森⽥⼒ Reinforcement Fine-tuning 基礎〜実践まで
⾃⼰紹介 • 所属 ◦ クラウド事業本部 コンサルティング部 • 好きなサービス ◦ Amazon
Bedrock ◦ AWS Lambda • re:Invent ◦ 2回⽬の参加 ◦ PCディスプレイ破損した😇
AWS re:Invent 2025 - Dr. Swami Sivasubramanian
Reinforcement Fine-tuning in Amazon Bedrock Reinforcement Fine-tuningの特徴として • ベースモデルと⽐較して、平均66%の精度向上を実現 •
深い機械学習(ML)の専⾨知識や、⼤規模なラベル付きデータセットは不要 • エンドツーエンドで⾃動化されたファインチューニング • 品質を維持しながら、より⼩さく、⾼速で、費⽤対効果の⾼いモデルを実現
Reinforcement?
Reinforcement Learning Reinforcement … Reinforcement Learning(強化学習) 強化学習は、端的に⾔うと「最適な⾏動や戦略を学習する⼿法」 ⾝近な例:ゲームをする場合
ゲームに対しての攻略⽅法がわからない ユーザが取れる⾏動: • 攻撃する • 移動する など → 様々な⾏動を試して、試⾏錯誤を⾏う Reinforcement
Learning
⾏動の結果がわかる 結果: • 勝つ • 負ける など この結果と⾏動を紐づけて考える 例:攻撃すると勝つ、移動すると負ける Reinforcement
Learning
Reinforcement Learning ゲームの場合でも • 様々な状態,⾏動, 結果があるため、⼈間では全てを把握することは難しい 強化学習では • 「様々な状態,⾏動, 結果」を表現することで最適な⾏動を選択できるようなる
• 結果も数値で表現するため、 ◦ 良い結果の場合、プラス ◦ 悪い結果の場合、マイナス ◦ このように与える数値のことを報酬と呼びます
Reinforcement Fine-tuningについて
Reinforcement Fine-tuning Reinforcement Fine-tuning (RFT) 「強化学習」の仕組みを LLM の学習(Fine-tuning)に適⽤ 先ほどのゲームの例では「クリアやスコア」が報酬 RFTにおいては「⼈間の評価」や「特定の基準」が報酬
具体的には、モデルが⽣成した回答に対して、 「この回答は良い(報酬を与える)」「この回答は良くない(罰則を与える)」 というフィードバックを与える → 「より⾼い評価が得られる回答の作り⽅」を学習させることが可能
Reinforcement Fine-tuning
Bedrock Reinforcement Fine-tuningについて
Bedrock Reinforcement Fine-tuning 以下を設定するだけで Reinforcement Fine-tuning を実⾏可能 • ソースモデル •
⼊⼒データ • 報酬関数
ソースモデル 現在は、「Nova 2 Lite」のみの対応 https://dev.classmethod.jp/articles/amazon-nova-2-lite-release-aws-reinvent/
⼊⼒データ • OpenAI chat completions format(JSONL) • モデル呼び出しログ
報酬関数 AI フィードバック • AI(LLM)を⽤いて評価する⽅法 • AIにどのようなケースでどのような報酬を与えるかをプロンプトとして与えるこ とで、回答をより柔軟に評価することが可能となる
報酬関数 AI フィードバック • 選択できるAI(LLM) ◦ Nova Premier ◦ gpt-oss-120b
• プロンプトのサンプルの提供あり ◦ Instruction following (Judge model training) ◦ Summarization (Multi-turn dialogs) ◦ Reasoning evaluation (CoT for specialized domains) ◦ RAG faithfulness (Context-grounded Q&A)
報酬関数 検証可能な報酬 • 報酬関数を事前にルールベースで定義 • コード⽣成や数学的推論では、以下のように明確な正解が存在する ◦ エラーなく実⾏できるか ◦ 計算結果が合っているか
• このようなケースでは、AIモデルを⽤いるよりルールベースで与えたほうが、 より正確で効率的な学習が可能になります。
報酬関数 検証可能な報酬 • AWS Lambdaで設定可能 • Lambdaのサンプル提供あり ◦ Format &
constraints checker ◦ Math reasoning
結論: 「⼊⼒データ」だけ準備すればOK
Bedrock Reinforcement Fine-tuningのジョブ実⾏ • ジョブの時間単位 • (おそらく)関連リソースの料⾦も発⽣する ◦ 報酬関数(LLM, AWS
Lambda) モデル推論 • カスタムモデルオンデマンド ◦ 利⽤したトークンベースの課⾦ ◦ ホスティング費⽤は発⽣しない 料⾦
まとめ • 従来まで構成が難しい Reinforcement Fine-tuning が Bedrockで実現可能に • ⼩規模モデルで精度が満⾜できていなかったケースでも採⽤できる可能性あり •
作成したモデルも従量課⾦で利⽤できるため、スモールに開始できる
None