Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RAGの簡易評価によるフィードバックサイクル実践 / Feedback cycle pract...

RAGの簡易評価によるフィードバックサイクル実践 / Feedback cycle practice through simplified assessment of RAGs

Takeshi Kondo

July 11, 2024
Tweet

More Decks by Takeshi Kondo

Other Decks in Technology

Transcript

  1. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 Takeshi Kondo (@chaspy) Director

    of Engineering StudySapuri K12 at Recruit Co., Ltd. 観葉植物 クラフトビール が好き 今日は友達増やしにきました! chaspy chaspy_ https://chaspy.me
  2. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 アーキテクチャ 素敵な図はチームメンバーの aoi さん作のものをお借りしました。詳細はブログ

    RAGを使って社内のGitHubリポジトリに散ら ばっているドキュメントを自然言語で検索できるSlack botを作りました - スタディサプリ Product Team Blog もご覧くださ い!
  3. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 RAG の評価をする上での前提となる考え ➔ 現状ベータ版であり、ユーザからフィードバックを

    高速に得て、改善を繰り返すかが重要 ➔ やりたいことは検索であり、ソースドキュメントに たどり着くことをゴールとしているので、高度な評 価指標は必要ない ◆ ※ドキュメントは monorepo で markdown + docsify な どの SSG でビルド & Amazon S3 で配信しているものが 多い
  4. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 簡易的に評価する手法 • (1)回答に満足したかどうかを リアクションで促す

    ◦ 生成 AI のアウトプットに固定文を追加しているだけ • (2)ローカルで同一の API を実行し、求める検索結 果が得られたかどうかを確認する ◦ E2E でのリグレッションテスト相当 ◦ テストケースと回答のセット(質問/url)を csv で持つ
  5. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (1)回答に満足したかどうかを リアクションで促す • 意外と押してくれる

    ◦ 将来、満足度を計測するのにも使えそう ◦ インターフェースが Slack だったからこその利点 ◦ チャンネルはウォッチしてるので満足していなさそうだっ たら @chaspy が回答していますw ▪ このタイミングで、ソースドキュメントの追加・編集をやっている
  6. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (1)回答に満足したかどうかを リアクションで促す • フィードバックはタイミングと簡単さが重要

    ◦ google map の経路案内後の UI にヒントを得た ◦ タスクを終えて一息ついたタイミングで、押すだけ ▪ 逆にタスク中で邪魔なタイミングだと反感を買う
  7. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (2)ローカルで同一の API を実行し、求める検索結果が 得られたかどうかを確認する

    • 質問と期待するソース url のセットを csv で持つ ◦ Qall-k8sって何?,https://docs.xxx.com/xxxx/yyy/qall- k8s • 1行ずつ呼んで、api を呼び出し、最終回答に url が 含まれるかを確認するだけ
  8. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (2)ローカルで同一の API を実行し、求める検索結果が 得られたかどうかを確認する

    • ドキュメントが増えていくにつれて検索精度が落ち ることが予想される ◦ それに管理者側で事前に気付けるようにする ◦ 検索システムと割り切ることで、高度な評価をしない
  9. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (1)コスト高い問題 • 最初に日本リージョンを選んでしまったため、最新 モデルが使えるまで時間がかかる

    ◦ gpt-4-32k をしばらく使っていたが、冷静に考えると高い ▪ input ¥9.637 / 1000 token (Azure OpenAI) ◦ 調べると Input token 数がかなり多い ▪ 1回の問い合わせで10000token使っていた、つまり1回あたり100円
  10. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (1)コスト高い問題 - 解決策 •

    まず計測 - 回答時に token を出力 • 採用する検索結果を5件から3件に • 米国 Region で作り直そうと思ってたら先週日本 Region でも gpt-4o 使えるように ◦ ¥0.8031 / 1000 input token, 1/10 以下に • 最初から最新モデルが使えるリージョンで作ろう
  11. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (2)ソース url の伝播難しい問題 ①

    Metadata に url を付 与 ② field mapping を設定 ③ URL も返却せよと指示 しかし回答結果は不安定...
  12. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (2)ソース url の伝播難しい問題 ③

    URL も返却せよと指示 ->なくせた ちゃんとAPI Response 見ましょう リクエストボディで指定しないとレスポンスボデ ィに url は含まれてなかった! {“parameters”: { "fieldsMapping": {"urlField": "customUrl"}, }
  13. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 (3)index 再生成うまくいってない問題 (未解決) •

    当時試行錯誤していた際、blob のメタデータに付与した url が 間違っていたり、null のままだったりした • その場合、indexing すると別の index が生成されてしまう • index の Reset で解決するはずだが、AI Search で検索すると 過去の誤ったチャンクが引っかかってしまう...(なんで?) ◦ とはいえ E2E で実行して問題ないので、問題ないのかも
  14. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 まとめ ➔ Slack 上で問い合わせる

    RAG を使った Bot を作った ◆ 実質ドキュメント検索システムとして作っている ➔ 回答に をつけてもらったり、E2E でリグレッションテスト を実施することで評価している ◆ 簡易な評価でもフィードバックサイクルを回すのに十分役立っている ➔ 課題としてコストや、特有のソース url の伝播や、index の reset に関するつまづきを紹介しました
  15. #RAG_findy 現場で実践!RAG活用術 Lunch LT ― 運用して分かった"つらみ"とその対策 Thank you for listening!

    Takeshi Kondo (@chaspy) Director of Engineering StudySapuri K12 at Recruit Co., Ltd. 今日紹介した課題は LT 発表決まってか ら解決しました!LT 駆動進捗 chaspy chaspy_ https://chaspy.me