Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
クックパッドにおけるCloud AutoML事例
Search
chie8842
November 02, 2018
Technology
9
7.9k
クックパッドにおけるCloud AutoML事例
Cookpad Tech Kitchen #19 R&Dにおけるサービス開発者の仕事(
https://cookpad.connpass.com/event/104459/
)における発表資料です。
chie8842
November 02, 2018
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas:モダンなアプリ開発を支えるデータプラットフォームのご紹介
chie8842
0
9
MongoDB Vectorsearchではじめるカスタマイズ可能な生成AIアプリ開発
chie8842
0
10
MongoDB Atlas Search のご紹介
chie8842
2
1.7k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
1.7k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
1.1k
Distributed Processing in Python
chie8842
2
730
クックパッドにおける推薦(と検索)の取り組み
chie8842
20
8.1k
Understanding distributed processing in Python
chie8842
2
2.1k
Performance Tuning Tips of TensorFlow Inference
chie8842
1
750
Other Decks in Technology
See All in Technology
品質と速度の両立:生成AI時代の品質保証アプローチ
odasho
1
260
Delegating the chores of authenticating users to Keycloak
ahus1
0
140
成長し続けるアプリのためのテストと設計の関係、そして意思決定の記録。
sansantech
PRO
0
120
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
2
6.7k
United Airlines Customer Service– Call 1-833-341-3142 Now!
airhelp
0
170
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
170
20250705 Headlamp: 專注可擴展性的 Kubernetes 用戶界面
pichuang
0
260
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
0
110
What’s new in Android development tools
yanzm
0
280
PO初心者が考えた ”POらしさ”
nb_rady
0
200
Backlog ユーザー棚卸しRTA、多分これが一番早いと思います
__allllllllez__
1
140
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
3
7.2k
Featured
See All Featured
Visualization
eitanlees
146
16k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Pragmatic Product Professional
lauravandoore
35
6.7k
How STYLIGHT went responsive
nonsquared
100
5.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
950
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
How to Ace a Technical Interview
jacobian
277
23k
4 Signs Your Business is Dying
shpigford
184
22k
Designing for Performance
lara
610
69k
Raft: Consensus for Rubyists
vanstee
140
7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Transcript
ΫοΫύουʹ͓͚Δ "VUP.- ݚڀ։ൃ෦ ػցֶशάϧʔϓ ྛాઍӯ !DIJF 2018/11/01 Cookpad Tech Kitchen
#19 R&D
$IJF)BZBTIJEB • ػցֶशνʔϜ ιϑτΣΞΤϯδχΞ • ػցֶशϞσϦϯάΔ͠ج൫Δ͠ΞϓϦॻ͘ • ͕͖ !DIJF 8FC
%# 1SFTTͰ ػցֶशΞϓϦ࡞ͷ ೖهࣄΛॻ͍ͨ 1Z$PO+1 %FW'FTU ͳͲͰొஃ
5-%3 • ,PNFSDPʢΫοΫύου৽نࣄۀʣʹ͓͚Δ (PPHMF $MPVE"VUP.-ࣄྫͷհ • αʔϏε։ൃͷಓ۩ͱͯ͠ػցֶशΛͬͯ ͍͜͏ʂͱ͍͏
,PNFSDPʹ͓͚Δ (PPHMF $MPVE "VUP.-ࣄྫ
• ΫοΫύουͷ&$৽نࣄۀ • ྉཧಓ۩ɺ͏ͭΘɺΧτϥϦʔɺϦωϯࡶ՟ͳͲͷ lྉཧָ͕͘͠ͳΔϞϊz͕ങ͑Δ ϚϧγΣΞϓϦ ͔ͭͬͯΈͯͶʂ
Ϟνϕʔγϣϯ ͱͱग़ऀͷࡋྔͰࣗ༝ʹλά͚ ͕ߦΘΕ͍͕ͯͨɺߪೖऀʹΑΔݕࡧ͠ ͢͞ͷͨΊɺΧςΰϦ͚Λߦ͍͍ͨ
ը૾Λ༻͍ͨΧςΰϦྨ • ը૾Λ༻͍ͯશΧςΰϦʹྨ͍ͨ͠ ۚଐͷث സ ΧτϥϦʔ Τϓϩϯ ϑϥΠύϯ ು แஸ
Ωονϯ πʔϧ ಃث ࣓ث ͷث Ψϥεͷث ࣫ث หശ Ωονϯ ϑΝϒϦοΫ
(PPHMF$MPVE"VUP.-7JTJPO • ػցֶशϞσϧΛτϨʔχϯάͯ͠ɺࣗͷఆٛ ͨ͠ϥϕϧʹैͬͯը૾Λྨ͢Δ͜ͱ͕Ͱ͖Δɺ ($1্ͷαʔϏε
(PPHMF$MPVE"VUP.-7JTJPO • ,PNFSDPج൫ͱͯ͠'JSFCBTFΛ࠾༻͓ͯ͠Γɺಉ͡ ($1্ͷαʔϏεͰ͋Δ$MPVE"VUP.-ͱ૬ੑ͕͍͍ • ػցֶशΤϯδχΞ͕͍ͳ͘ͱӡ༻͕Մೳ • ΨοͱࣗͰ࡞ͬͨ*ODFQUJPO7ϞσϧΑΓੑೳ͕ Αͦ͞͏ͩͬͨ •
ϞσϧͷαʔϏϯάͳͲͷख͕͍ؒΒͣɺΠχγϟϧ ͷར༻͕ߦ͍͍͢ • ίετ໘ͰػցֶशΤϯδχΞͷ(16 ΠϯελϯεΛར༻࣮ͨ͠ݧίετΛߟྀ͢Δͱ ༏ҐͰ͋Δ
ߟྀͨ͠ᶃ • ৽نαʔϏεͳͷͰɺը૾͕গͳ͍ΧςΰϦ ͕͋Δ • Πϯλʔωοτ্ͷը૾ΛՃֶͯ͠श • ΧςΰϦͷ͏ͪɺʮಃثʯͱʮ࣓ثʯͳͲɺࢹ ֮ใ͔Βผ͕͍͠ΧςΰϦ͕͋Δ •
ҰͭͷΧςΰϦͱͯ͠ਪఆ͠ɺग़ऀʹͲͪΒ͔બ ΜͰΒ͏
ߟྀͨ͠ᶄ • ෳͷΧςΰϦͷ͏ͪͲͪΒ͔·͍͠߹͕͋Δ • ͷหശˠΧςΰϦީิɿͷث PSหശ • ΧςΰϦͱ͍ͨͨ͠ΊɺείΞεϨογϣϧυ ˞ ΛԼ͛ͯෳͷΧςΰϦީิ͔Βग़ऀʹબͤΔ
• ࠓޙΧςΰϦใ͕มߋͱͳΔՄೳੑ͕͋Δ • ࠓճֶशͷͨΊͷϥϕϧ͚ࣾͰਓखͰߦ͕ͬͨɺ ࠓޙΧςΰϦͷՃɾมߋͳͲ͕ߟ͑ΒΕΔ • (PPHMF$MPVEͷ)VNBO-BCFMJOHαʔϏεͷར༻ͳͲ͕ ߟ͑ΒΕΔ ˞ "VUP.-ʹ͓͚Δਪఆ࣌ͷࢦඪɻ͜ͷΛߴ͘͢Δͱ৴པͷߴ͍ީิͷΈΛฦ٫͠ɺ ͘͢Δͱ৴པ͕͍ީิฦ٫͢Δ
͜Ε͔ΒͷαʔϏε ։ൃʹ͓͚Δػցֶश
ਓೳͷౙདྷͳ͍ʢͱ͍͏ਓ͍Δʣ https://www.wsj.com/articles/ai-guru-andrew-ng-on-the-job-market-of-tomorrow-1540562400 ػցֶशΛ༻͍ͨαʔϏε։ൃࠓޙٻΊΒΕ͍ͯ͘ (PPHMF#SBJOͷDPGPVOEFSɺ#BJEV 3FTFBSDIͷ"OESFX/Hͷهࣄ
ػցֶशͷར༻ύλʔϯ ֶशࡁΈϞσϧΛར༻͢Δ͚ͩͷύλʔϯ • Google Cloud Vision API • Amazon
Rekognition • Azure Cognitive Services ΧελϜϞσϧΛ࡞Δύλʔϯ • Google Cloud AutoML • "EB/FU r 5FOTPSGMPXϕʔεͷ"VUP.-ϑϨʔϜϫʔΫ • 5105 r TDJLJUMFBSOͷϋΠύύϥϝʔλνϡʔχϯάΛࣗಈԽ͢Δ πʔϧ ࠷৽ٕज़Λར༻ͯ͠ݻ༗ͷϞσϧΛ࡞Δ ύλʔϯ • 5FOTPSGMPXTDJLJUMFBSOΛར༻ͯࣗ͠Ͱ ϞσϧΛ࡞ΓɺσϓϩΠ͢Δ • Ͱղ͚ͳ͍ʹରͯ͜͠ͷํ๏͕ඞཁ easy difficult ͱ ػցֶशΤϯδχΞ͕͍ͳ͘ͱѻ͑Δ
easy difficulty ػցֶशͷར༻ύλʔϯ • ֶशࡁΈϞσϧΛར༻͢Δ͚ͩͷύλʔϯ • Google Cloud Vision API
• Amazon Rekognition • Azure Cognitive Services • ΧελϜϞσϧΛ࡞Δύλʔϯʢ"VUP.-ʣ • Google Cloud AutoML • "EB/FU r 5FOTPSGMPXϕʔεͷ"VUP.-ϑϨʔϜϫʔΫ • 5105 r TDJLJUMFBSOϕʔεͷػցֶशύΠϓϥΠϯͷ࠷దԽπʔϧ • ࠷৽ٕज़Λར༻ͯ͠ݻ༗ͷϞσϧΛ࡞Δύλʔϯ • Tensorflowscikit-learn • ػցֶशͷઐ͕ࣝඞཁͳΞϧΰϦζϜ࣮ɺϋΠύʔύϥϝʔλ νϡʔχϯάͳͲΛࣗಈͰߦͬͯ͘ΕΔ • ͜ΕΒΛ͏·͘͏͜ͱͰɺػցֶश͕Ͱ͖ͳͯ͘ɺαʔϏε։ൃͷ ෯͕͕Δ • Ϧαʔνʹ͓͍ͯ͞Ε͍ͯΔͷҰͭ
·ͱΊ • ػցֶशɺࠓޙػցֶशཧʹৄ͍͠ઐՈ Ͱͳͯ͘ѻ͏͜ͱ͕Ͱ͖ΔΑ͏ʹͳ͍ͬͯ͘ • (PPHMF$MPVE"VUP.-ศརʂ • ͱ͍͑ղ͚Δͱղ͚ͳ͍͕͋Δ • αʔϏε։ൃͷಓ۩ͱͯ͠ػցֶशΛ͏·͘
͍ͬͯ͜͏ʂ