Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 SDM2020 Content-Aware Successive Point-of...
Search
cocomoff
November 05, 2020
Research
0
80
論文読み会 SDM2020 Content-Aware Successive Point-of-Interest Recommendation
cocomoff
November 05, 2020
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
55
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
41
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
220
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
120
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
39
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
75
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
290
ClimaX: A foundation model for weather and climate
cocomoff
0
570
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
230
Other Decks in Research
See All in Research
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
180
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
180
Transparency to sustain open science infrastructure - Printemps Couperin
mlarrieu
1
170
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
250
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
840
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
110
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
230
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
110
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.6k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
Code Review Best Practice
trishagee
68
18k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Visualization
eitanlees
146
16k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Become a Pro
speakerdeck
PRO
28
5.4k
KATA
mclloyd
29
14k
Being A Developer After 40
akosma
90
590k
Rails Girls Zürich Keynote
gr2m
94
14k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Cult of Friendly URLs
andyhume
79
6.5k
Transcript
SDM2020 @cocomoff
概要 ( その1) POI (Point-of-Interests) を3 つの情報から推薦するアルゴリズムの提案 ユーザの特徴埋め込みベクトル 過去にチェックインしたPOI の埋め込みベクトル
チェックイン時に投稿したテキスト情報 1/14 u l , … , l 1 T s , … , s 1 T
概要 ( その2) ⼿法 テキスト情報は⽂字単位で埋め込む 過去のチェックイン履歴からLSTM&MHA で埋め込みを学習する 実験評価 Instagram (2M
チェックイン) ,Foursquare (500k チェックイン) 推薦システムの評価指標 Recall@k / MRR が全体的に向上した 2/14
実験結果⼀覧 3/14
以下詳細
問題設定 過去の 回のチェックイン情報から,チェックインスコアを予測する 記号 ユーザの集合 POI の集合 回のチェックイン履歴 予測 地点
のスコア : のときにチェックインしたPOI : のときのチェックインに紐付いたテキスト 4/14 T U P T (C , C , … , C ) 1 2 T l ∈ i L = y i ^ f(l ∣ i C , … , C , u) 1 T C = k (l , s ) k k l k k sk k
テキスト情報の埋め込み ( その1) 素のテキスト ("coffee") とハッシュタグ ("cafeandcofee") アイデア1: ハッシュタグは空⽩区切りされていないテキストなので,単 語埋め込みベクトルではなく,⽂字埋め込みベクトルを利⽤する
アイデア2: テキスト を⽂字の埋め込みベクトルの列 ( 固定⻑) とする 例: 140 字@Twitter なので,⻑くなくていい ( 設定では256 ⽂字分) 5/14 s
テキスト情報の埋め込み ( その2) ネットワーク構造 6/14
提案アルゴリズムCAPRE の全体構造 ネットワーク構造 論⽂では式が書いてあるけど,新規性の⾼い構造ではない 7/14
評価指標 参考: https://yolo-kiyoshi.com/2019/12/03/post-1557/ Recall@K ユーザが実際に選好したPOI に対して, 推薦した 個のPOI が含まれる割合 MRR
(Mean Reciprocal Rank; 平均相互順位) 全ユーザ に対して,ユーザ への推薦のうち何位を選択 したか ( ) ,の逆数の平均 1 位と2 位の差は⼤きい ( と ) 100 位と101 位の差は⼩さい ( と ) 8/14 K MRR = ∣U ∣ 1 ∑u ∈U rank u 1 ∣U ∣ u rank u 1 1 2 1 100 1 101 1
提案アルゴリズムCAPRE のいくつかの特徴 スコア の予測に対して,以下の特徴量や⼯夫が⼊っている (A): ユーザの埋め込み特徴 ( 紫⾊) (B): context-aware
なユーザの特徴 ( 緑⾊) (C): POI の関係をLSTM で埋め込んだgeographical な特徴 ( オレンジ) (D): テキスト埋め込みにMHA を使った機構 (E): コンテキスト情報埋め込みで使ったアテンション機構 9/14 y
提案アルゴリズムCAPRE のablation test 10/14
テキスト情報読むためにMHA って必要なんですか? ablation test に追加して,重みを可視化する => 必要っぽい 11/14
Geo/Content-aware なアテンション機構ってどうなんですか? ( その1) 典型的な例 ( らしい) (geo) 位置関係として,履歴として近い⽅が重い (ca)
バーと似ている内容のレストラン/ カフェが重い 12/14
Geo/Content-aware なアテンション機構ってどうなんですか? ( その2) ( 左) チェックイン履歴として近い薬局は重みが⼤きい (ca) の⽅では,コーヒーに近いのはレストラン (
右) 空港で⾶ぶと考えると,地理的な重みはまばらになっている (ca) の⽅では,ホテルを予想するのに1 つ前の空港が効いてくる 13/14
⽂脈依存型推薦システムのcold-start 問題 過去の論⽂で指摘されるようにcold-start が⼤事と知られている 過去の⼿法含め,過去のチェックイン数への依存具合を評価する 14/14