Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 SDM2020 Content-Aware Successive Point-of...
Search
cocomoff
November 05, 2020
Research
0
90
論文読み会 SDM2020 Content-Aware Successive Point-of-Interest Recommendation
cocomoff
November 05, 2020
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
78
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
61
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
250
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
140
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
49
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
89
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
310
ClimaX: A foundation model for weather and climate
cocomoff
0
600
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
250
Other Decks in Research
See All in Research
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
620
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
650
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
120
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
230
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
530
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
120
説明可能な機械学習と数理最適化
kelicht
2
650
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
350
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.3k
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
5k
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Documentation Writing (for coders)
carmenintech
76
5.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Mobile First: as difficult as doing things right
swwweet
225
10k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Unsuck your backbone
ammeep
671
58k
RailsConf 2023
tenderlove
30
1.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
69k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
SDM2020 @cocomoff
概要 ( その1) POI (Point-of-Interests) を3 つの情報から推薦するアルゴリズムの提案 ユーザの特徴埋め込みベクトル 過去にチェックインしたPOI の埋め込みベクトル
チェックイン時に投稿したテキスト情報 1/14 u l , … , l 1 T s , … , s 1 T
概要 ( その2) ⼿法 テキスト情報は⽂字単位で埋め込む 過去のチェックイン履歴からLSTM&MHA で埋め込みを学習する 実験評価 Instagram (2M
チェックイン) ,Foursquare (500k チェックイン) 推薦システムの評価指標 Recall@k / MRR が全体的に向上した 2/14
実験結果⼀覧 3/14
以下詳細
問題設定 過去の 回のチェックイン情報から,チェックインスコアを予測する 記号 ユーザの集合 POI の集合 回のチェックイン履歴 予測 地点
のスコア : のときにチェックインしたPOI : のときのチェックインに紐付いたテキスト 4/14 T U P T (C , C , … , C ) 1 2 T l ∈ i L = y i ^ f(l ∣ i C , … , C , u) 1 T C = k (l , s ) k k l k k sk k
テキスト情報の埋め込み ( その1) 素のテキスト ("coffee") とハッシュタグ ("cafeandcofee") アイデア1: ハッシュタグは空⽩区切りされていないテキストなので,単 語埋め込みベクトルではなく,⽂字埋め込みベクトルを利⽤する
アイデア2: テキスト を⽂字の埋め込みベクトルの列 ( 固定⻑) とする 例: 140 字@Twitter なので,⻑くなくていい ( 設定では256 ⽂字分) 5/14 s
テキスト情報の埋め込み ( その2) ネットワーク構造 6/14
提案アルゴリズムCAPRE の全体構造 ネットワーク構造 論⽂では式が書いてあるけど,新規性の⾼い構造ではない 7/14
評価指標 参考: https://yolo-kiyoshi.com/2019/12/03/post-1557/ Recall@K ユーザが実際に選好したPOI に対して, 推薦した 個のPOI が含まれる割合 MRR
(Mean Reciprocal Rank; 平均相互順位) 全ユーザ に対して,ユーザ への推薦のうち何位を選択 したか ( ) ,の逆数の平均 1 位と2 位の差は⼤きい ( と ) 100 位と101 位の差は⼩さい ( と ) 8/14 K MRR = ∣U ∣ 1 ∑u ∈U rank u 1 ∣U ∣ u rank u 1 1 2 1 100 1 101 1
提案アルゴリズムCAPRE のいくつかの特徴 スコア の予測に対して,以下の特徴量や⼯夫が⼊っている (A): ユーザの埋め込み特徴 ( 紫⾊) (B): context-aware
なユーザの特徴 ( 緑⾊) (C): POI の関係をLSTM で埋め込んだgeographical な特徴 ( オレンジ) (D): テキスト埋め込みにMHA を使った機構 (E): コンテキスト情報埋め込みで使ったアテンション機構 9/14 y
提案アルゴリズムCAPRE のablation test 10/14
テキスト情報読むためにMHA って必要なんですか? ablation test に追加して,重みを可視化する => 必要っぽい 11/14
Geo/Content-aware なアテンション機構ってどうなんですか? ( その1) 典型的な例 ( らしい) (geo) 位置関係として,履歴として近い⽅が重い (ca)
バーと似ている内容のレストラン/ カフェが重い 12/14
Geo/Content-aware なアテンション機構ってどうなんですか? ( その2) ( 左) チェックイン履歴として近い薬局は重みが⼤きい (ca) の⽅では,コーヒーに近いのはレストラン (
右) 空港で⾶ぶと考えると,地理的な重みはまばらになっている (ca) の⽅では,ホテルを予想するのに1 つ前の空港が効いてくる 13/14
⽂脈依存型推薦システムのcold-start 問題 過去の論⽂で指摘されるようにcold-start が⼤事と知られている 過去の⼿法含め,過去のチェックイン数への依存具合を評価する 14/14