Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GovTechとマーケットデザイン発表資料(CA森脇)
Search
森脇大輔
February 24, 2022
Research
0
440
GovTechとマーケットデザイン発表資料(CA森脇)
2022年2月24日(木) 12:00~ 13:30
森脇大輔
February 24, 2022
Tweet
Share
More Decks by 森脇大輔
See All by 森脇大輔
Evidence-to-Decisionについて
daimoriwaki
0
320
EBPMにおける生成AI活用について
daimoriwaki
0
390
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
340
Developing “EBPM Database” to Improve Policy Making Process in Japan
daimoriwaki
0
78
保育:待機児童数を減らす取り組み
daimoriwaki
0
70
「EBPMエコシステム」の可能性
daimoriwaki
0
330
RecSys22読み会_MTRS
daimoriwaki
0
670
CADEVCONF
daimoriwaki
0
140
GovTechとマーケットデザイン (東京大学小島教授)
daimoriwaki
0
500
Other Decks in Research
See All in Research
「なんとなく」の顧客理解から脱却する ──顧客の解像度を武器にするインサイトマネジメント
tajima_kaho
2
2.7k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
830
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
620
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
400
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
220
Can We Teach Logical Reasoning to LLMs? – An Approach Using Synthetic Corpora (AAAI 2026 bridge keynote)
morishtr
1
130
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
770
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
190
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
560
「車1割削減、渋滞半減、公共交通2倍」を 熊本から岡山へ@RACDA設立30周年記念都市交通フォーラム2026
trafficbrain
1
550
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
130
Ankylosing Spondylitis
ankh2054
0
140
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
So, you think you're a good person
axbom
PRO
2
1.9k
Believing is Seeing
oripsolob
1
65
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
130
Technical Leadership for Architectural Decision Making
baasie
2
260
My Coaching Mixtape
mlcsv
0
57
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
320
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
600
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
90
Leo the Paperboy
mayatellez
4
1.4k
Odyssey Design
rkendrick25
PRO
1
510
Transcript
保育所プロジェクト ~取組の現在地~ 株式会社サイバーエージェント AILab 経済学社会実装チーム 森脇大輔 https://sites.google.com/site/dmoriwaki/
プロジェクトの開始 • 2021年にUTMDと共同研究を開始 • 利用調整の実態をヒアリング • 匿名化データの分析 • 渋谷区・多摩市との共同実証実験を
開始
渋谷区における事例 • テーマ ◦ 保育所手続きのデジタル化 ◦ 利用調整アルゴリズムの改善
利用調整アルゴリズムの改善 • SOFMアルゴリズムを適用した場合のシミュレーション分析を実施 第N番目に希望した保育所に入所 児童数 不公平が起きたケース
現実応用のための課題 • 部屋の共有の現実性 • あまり定員の排除 • 保育所側のインセンティブの確保 ◦ 一部自治体では補助金を用いて年齢
別定員を調整 事務調整コストを 超える効果を出せ るか 保育所にとってインセンティ ブがあるか 保育士の稼働率を 妥当な範囲に抑え られるか 人数に応じて部屋のレイア ウトを変えられるか あまり定員をなくせ るか
さまざまなアルゴリズムとその性質 アルゴリズム 特徴 SOFM カリフォルニア大鎌田准教 授、東京大学小島教授 • 職員数や施設面積等の制約下で定員を調整 • なるべく多くの児童をマッチできないか探索する
• ◯ マッチ数が現状より大きく増える、きょうだい同所入所 • ✕ 年齢別定員が大きく変化する NRMP 米国研修医マッチングで利 用 • きょうだい同所入所に対応した受入留保アルゴリズム • ◯ 年齢別定員が変化しない、きょうだい同所入所 • ✕ マッチ数が現状と変わらない、アルゴリズムが収束しない場合がある Nguyen-Vorha • 最大2名の定員変化を許容することで、NRMPと似たマッチングを導く • ◯ マッチ数が現状より少し増える、きょうだい同所入所 • △年齢別定員の多少の調整が必要な場合もある Okumura 東京海洋大学 奥村准教授 • 職員数や施設面積等の制約下で定員を調整 • 受入保留など他のアルゴリズムと組み合わせ可能 • ◯ マッチ数が現状より増える • ✕ 年齢別定員が変化する Biro et al. • きょうだいの同所などを含めて整数問題として計算 • 目標とする指標を最大化 • ×解が見つからない場合もある
利用申請システムの改善 • システムによって「本来の」選好を引き出す • 豊富な情報・使いやすさ・検討のしやすさ 開発中画面
多摩市における事例 • 利用調整についての実証実験 • 課題感 ◦ 利用調整の自動化 ◦ アルゴリズムの最適化
利用調整ルールの改善 ジニ係数 2021年:0.475 2022年:0.484
転園処理 保育課の方に伝えたいこと • 現状アルゴリズムについての理解 ◦ そもそもどういうアルゴリズムを採用している のか ◦ ブラックボックスになっていないか
• データを用いた客観的検証 ◦ どのような指標を重視するのか ◦ ほかのアルゴリズムとの比較 公平性 待機児童数 きょうだいの同所率 資源の無駄 希望の充足度
保育所の利用申請の全体最適化を目指す 利 用 調 整 結 果 通 知 二
次 募 集 ※さらに居宅 事業等への斡 旋など 利 用 申 し 込 み 見 学 ・ 情 報 取 集 ・・・ Twitter: @dmoriwaki mail:
[email protected]