Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GovTechとマーケットデザイン発表資料(CA森脇)
Search
森脇大輔
February 24, 2022
Research
0
380
GovTechとマーケットデザイン発表資料(CA森脇)
2022年2月24日(木) 12:00~ 13:30
森脇大輔
February 24, 2022
Tweet
Share
More Decks by 森脇大輔
See All by 森脇大輔
Evidence-to-Decisionについて
daimoriwaki
0
220
EBPMにおける生成AI活用について
daimoriwaki
0
250
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
210
Developing “EBPM Database” to Improve Policy Making Process in Japan
daimoriwaki
0
20
保育:待機児童数を減らす取り組み
daimoriwaki
0
20
「EBPMエコシステム」の可能性
daimoriwaki
0
250
RecSys22読み会_MTRS
daimoriwaki
0
590
CADEVCONF
daimoriwaki
0
61
GovTechとマーケットデザイン (東京大学小島教授)
daimoriwaki
0
450
Other Decks in Research
See All in Research
Neural Fieldの紹介
nnchiba
1
530
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
420
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
250
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
160
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
860
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
210
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
450
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
580
CoRL2024サーベイ
rpc
1
1.3k
Optimal and Diffusion Transports in Machine Learning
gpeyre
0
720
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.6k
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
6
1.9k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
89
5.8k
A Philosophy of Restraint
colly
203
16k
Facilitating Awesome Meetings
lara
50
6.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
560
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Practical Orchestrator
shlominoach
186
10k
Why Our Code Smells
bkeepers
PRO
335
57k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Visualization
eitanlees
146
15k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
950
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Transcript
保育所プロジェクト ~取組の現在地~ 株式会社サイバーエージェント AILab 経済学社会実装チーム 森脇大輔 https://sites.google.com/site/dmoriwaki/
プロジェクトの開始 • 2021年にUTMDと共同研究を開始 • 利用調整の実態をヒアリング • 匿名化データの分析 • 渋谷区・多摩市との共同実証実験を
開始
渋谷区における事例 • テーマ ◦ 保育所手続きのデジタル化 ◦ 利用調整アルゴリズムの改善
利用調整アルゴリズムの改善 • SOFMアルゴリズムを適用した場合のシミュレーション分析を実施 第N番目に希望した保育所に入所 児童数 不公平が起きたケース
現実応用のための課題 • 部屋の共有の現実性 • あまり定員の排除 • 保育所側のインセンティブの確保 ◦ 一部自治体では補助金を用いて年齢
別定員を調整 事務調整コストを 超える効果を出せ るか 保育所にとってインセンティ ブがあるか 保育士の稼働率を 妥当な範囲に抑え られるか 人数に応じて部屋のレイア ウトを変えられるか あまり定員をなくせ るか
さまざまなアルゴリズムとその性質 アルゴリズム 特徴 SOFM カリフォルニア大鎌田准教 授、東京大学小島教授 • 職員数や施設面積等の制約下で定員を調整 • なるべく多くの児童をマッチできないか探索する
• ◯ マッチ数が現状より大きく増える、きょうだい同所入所 • ✕ 年齢別定員が大きく変化する NRMP 米国研修医マッチングで利 用 • きょうだい同所入所に対応した受入留保アルゴリズム • ◯ 年齢別定員が変化しない、きょうだい同所入所 • ✕ マッチ数が現状と変わらない、アルゴリズムが収束しない場合がある Nguyen-Vorha • 最大2名の定員変化を許容することで、NRMPと似たマッチングを導く • ◯ マッチ数が現状より少し増える、きょうだい同所入所 • △年齢別定員の多少の調整が必要な場合もある Okumura 東京海洋大学 奥村准教授 • 職員数や施設面積等の制約下で定員を調整 • 受入保留など他のアルゴリズムと組み合わせ可能 • ◯ マッチ数が現状より増える • ✕ 年齢別定員が変化する Biro et al. • きょうだいの同所などを含めて整数問題として計算 • 目標とする指標を最大化 • ×解が見つからない場合もある
利用申請システムの改善 • システムによって「本来の」選好を引き出す • 豊富な情報・使いやすさ・検討のしやすさ 開発中画面
多摩市における事例 • 利用調整についての実証実験 • 課題感 ◦ 利用調整の自動化 ◦ アルゴリズムの最適化
利用調整ルールの改善 ジニ係数 2021年:0.475 2022年:0.484
転園処理 保育課の方に伝えたいこと • 現状アルゴリズムについての理解 ◦ そもそもどういうアルゴリズムを採用している のか ◦ ブラックボックスになっていないか
• データを用いた客観的検証 ◦ どのような指標を重視するのか ◦ ほかのアルゴリズムとの比較 公平性 待機児童数 きょうだいの同所率 資源の無駄 希望の充足度
保育所の利用申請の全体最適化を目指す 利 用 調 整 結 果 通 知 二
次 募 集 ※さらに居宅 事業等への斡 旋など 利 用 申 し 込 み 見 学 ・ 情 報 取 集 ・・・ Twitter: @dmoriwaki mail:
[email protected]