Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GovTechとマーケットデザイン発表資料(CA森脇)
Search
森脇大輔
February 24, 2022
Research
0
420
GovTechとマーケットデザイン発表資料(CA森脇)
2022年2月24日(木) 12:00~ 13:30
森脇大輔
February 24, 2022
Tweet
Share
More Decks by 森脇大輔
See All by 森脇大輔
Evidence-to-Decisionについて
daimoriwaki
0
290
EBPMにおける生成AI活用について
daimoriwaki
0
360
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
300
Developing “EBPM Database” to Improve Policy Making Process in Japan
daimoriwaki
0
57
保育:待機児童数を減らす取り組み
daimoriwaki
0
47
「EBPMエコシステム」の可能性
daimoriwaki
0
300
RecSys22読み会_MTRS
daimoriwaki
0
650
CADEVCONF
daimoriwaki
0
120
GovTechとマーケットデザイン (東京大学小島教授)
daimoriwaki
0
490
Other Decks in Research
See All in Research
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
640
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
510
近似動的計画入門
mickey_kubo
4
1k
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
210
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
180
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
290
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
860
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
150
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How to Ace a Technical Interview
jacobian
280
23k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Code Reviewing Like a Champion
maltzj
525
40k
How to train your dragon (web standard)
notwaldorf
96
6.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Done Done
chrislema
185
16k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
保育所プロジェクト ~取組の現在地~ 株式会社サイバーエージェント AILab 経済学社会実装チーム 森脇大輔 https://sites.google.com/site/dmoriwaki/
プロジェクトの開始 • 2021年にUTMDと共同研究を開始 • 利用調整の実態をヒアリング • 匿名化データの分析 • 渋谷区・多摩市との共同実証実験を
開始
渋谷区における事例 • テーマ ◦ 保育所手続きのデジタル化 ◦ 利用調整アルゴリズムの改善
利用調整アルゴリズムの改善 • SOFMアルゴリズムを適用した場合のシミュレーション分析を実施 第N番目に希望した保育所に入所 児童数 不公平が起きたケース
現実応用のための課題 • 部屋の共有の現実性 • あまり定員の排除 • 保育所側のインセンティブの確保 ◦ 一部自治体では補助金を用いて年齢
別定員を調整 事務調整コストを 超える効果を出せ るか 保育所にとってインセンティ ブがあるか 保育士の稼働率を 妥当な範囲に抑え られるか 人数に応じて部屋のレイア ウトを変えられるか あまり定員をなくせ るか
さまざまなアルゴリズムとその性質 アルゴリズム 特徴 SOFM カリフォルニア大鎌田准教 授、東京大学小島教授 • 職員数や施設面積等の制約下で定員を調整 • なるべく多くの児童をマッチできないか探索する
• ◯ マッチ数が現状より大きく増える、きょうだい同所入所 • ✕ 年齢別定員が大きく変化する NRMP 米国研修医マッチングで利 用 • きょうだい同所入所に対応した受入留保アルゴリズム • ◯ 年齢別定員が変化しない、きょうだい同所入所 • ✕ マッチ数が現状と変わらない、アルゴリズムが収束しない場合がある Nguyen-Vorha • 最大2名の定員変化を許容することで、NRMPと似たマッチングを導く • ◯ マッチ数が現状より少し増える、きょうだい同所入所 • △年齢別定員の多少の調整が必要な場合もある Okumura 東京海洋大学 奥村准教授 • 職員数や施設面積等の制約下で定員を調整 • 受入保留など他のアルゴリズムと組み合わせ可能 • ◯ マッチ数が現状より増える • ✕ 年齢別定員が変化する Biro et al. • きょうだいの同所などを含めて整数問題として計算 • 目標とする指標を最大化 • ×解が見つからない場合もある
利用申請システムの改善 • システムによって「本来の」選好を引き出す • 豊富な情報・使いやすさ・検討のしやすさ 開発中画面
多摩市における事例 • 利用調整についての実証実験 • 課題感 ◦ 利用調整の自動化 ◦ アルゴリズムの最適化
利用調整ルールの改善 ジニ係数 2021年:0.475 2022年:0.484
転園処理 保育課の方に伝えたいこと • 現状アルゴリズムについての理解 ◦ そもそもどういうアルゴリズムを採用している のか ◦ ブラックボックスになっていないか
• データを用いた客観的検証 ◦ どのような指標を重視するのか ◦ ほかのアルゴリズムとの比較 公平性 待機児童数 きょうだいの同所率 資源の無駄 希望の充足度
保育所の利用申請の全体最適化を目指す 利 用 調 整 結 果 通 知 二
次 募 集 ※さらに居宅 事業等への斡 旋など 利 用 申 し 込 み 見 学 ・ 情 報 取 集 ・・・ Twitter: @dmoriwaki mail:
[email protected]