$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gaussian_Process_Models.pdf
Search
ディップ株式会社
PRO
October 29, 2025
Technology
0
35
Gaussian_Process_Models.pdf
ディップ株式会社
PRO
October 29, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
プロフェッショナルへの道:ビジネスを動かすエンジニアリング思想
dip_tech
PRO
0
24
ユーザーファーストを実現するためのチーム開発の工夫
dip_tech
PRO
0
17
1年目エンジニアが働いてみて感じたリアルな悩みと成長
dip_tech
PRO
0
32
ベイズマルチファクターモデルとbPCausal
dip_tech
PRO
0
14
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
200
dip はたらこねっと におけるAI活用事例
dip_tech
PRO
0
37
_dip_ユーザーに価値を届けるための_コードレビュー___サービスレビュー_ワークショップ_.pdf
dip_tech
PRO
1
41
AI駆動開発によるDDDの実践
dip_tech
PRO
0
520
20年超レガシー「バイトル」をAI駆動で再設計!事業成長を実現するリアーキ戦略
dip_tech
PRO
1
190
Other Decks in Technology
See All in Technology
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
140
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
.NET 10の概要
tomokusaba
0
110
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
100
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
380
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
880
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
170
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
150
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
150
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
530
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
500
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
BBQ
matthewcrist
89
9.9k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Thoughts on Productivity
jonyablonski
73
5k
The Invisible Side of Design
smashingmag
302
51k
It's Worth the Effort
3n
187
29k
Documentation Writing (for coders)
carmenintech
76
5.2k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Transcript
Bayesian Data Analysis §21 Gaussian Process Models 久保知生 商品開発本部 DataBrain課
2024-12-02
(復習)パラメトリックモデル • 以下のパラメトリックな設定を考える。 – 𝑦𝑖 ∈ 𝒴 – 𝑦𝑖 |𝐹
∼ 𝑖𝑖𝑑 𝐹 – 𝐹 ∈ ℱ∗, 𝑤ℎ𝑒𝑟𝑒 ℱ∗ = 𝑁 𝑦|𝜇, 𝜏2 • ℱ∗はℱ = {𝒴上のすべての分布}に比べて小さいことがわか る。
(復習)ノンパラメトリックモデル • ノンパラメトリックベイズでは、より大きなℱの部分集合を 考える。 • そこで、2つのアプローチが考えられる。 – 基底関数によるアプローチ • 𝑔
𝑥; 𝜃 = σ𝑘=1 𝐾 𝜃𝑘 ℎ𝑘 𝑥 • ただし、ℎ𝑘 𝑥 は基底関数。 – process realizationによるアプローチ • {𝑔 𝑥 : 𝑥 ∈ 𝒳} • 例えば、𝑔 𝑥 はガウス過程からの観測結果。
(復習)基底関数モデル • ガウス分布の形をした基底関数を用意する。 – 𝜙ℎ 𝑥 = exp{− 𝑥−𝑥ℎ 2
𝑙2 } – 𝑥ℎ ∈ {−𝐻, ⋯ , −2, −1,0,1,2, ⋯ , 𝐻} • この基底関数を𝑥ℎ 上にグリッド状に多数配置し、𝑤ℎ ∈ 𝑅で適 当に重みづける。 – 𝑦 = 𝛴ℎ=−𝐻 𝐻 𝑤ℎ ⋅ exp{− 𝑥−𝑥ℎ 2 𝜎2 } • これにより、ほとんど任意の形の関数を表すことができる。
(復習)基底関数モデル
(復習)基底関数モデル • ノットの数(ℎ)が多すぎると計算が大変。 – 入力𝑥の次元が増えてパラメータ𝑤の次元が指数的に増える現 象を「次元の呪い」という。 • ノットの数(ℎ)が少なすぎると柔軟な回帰モデルを表 現ができない。
ガウス過程 • 簡単のため、誤差なく𝑦を𝑥の特徴ベクトル𝜙 𝑥 = 𝜙0 𝑥 , ⋯ ,
𝜙𝐻 𝑥 ′に回帰することを考える。 – 𝑦 = 𝑤0 𝜙0 𝑥 + ⋯ + 𝑤𝐻 𝜙𝐻 𝑥 – 行列形式では:𝑦 = 𝛷𝑤 • 𝑤 ∼ 𝑁 0, 𝜆2𝐼 • このとき、𝑦の期待値と分散はそれぞれ – 𝐸 𝑦 = 𝐸 𝛷𝑤 = 𝛷𝐸 𝑤 = 0 – 𝑉 𝑦 = 𝐸 𝑦𝑦′ − 𝐸 𝑦 𝐸 𝑦 ′ = 𝐸{ 𝛷𝑤 𝛷𝑤 ′} = 𝛷 𝑤𝑤′ 𝛷′ = 𝜆2𝛷𝛷′
ガウス過程 • したがって、𝑦 ∼ 𝑁 0, 𝜆2𝛷𝛷′ – 𝑦の分布を考えるにあたり、𝑤が消去されていることに注意。 •
𝐾 = 𝜆2𝛷𝛷′とおくと、𝐾の 𝑛, 𝑛′ 要素は以下で与えられる。 – 𝐾𝑛𝑛′ = 𝜆2𝜙 𝑥𝑛 ′𝜙 𝑥𝑛′ – つまり、𝐾はあらゆる入力𝜙0 𝑥 , ⋯ , 𝜙𝐻 𝑥 の共分散。 • 𝐾𝑛𝑛′ の値を与える関数をカーネル関数という。 – 𝐾𝑛𝑛′ = 𝑘 𝑥𝑛 , 𝑥𝑛′ = 𝜆2𝜙 𝑥𝑛 ′𝜙 𝑥𝑛′
ガウス過程 • 無限個の入力𝑥 = 𝑥1 , 𝑥2 , ⋯ に対応する出力𝑓
= 𝑓 𝑥1 , 𝑓 𝑥2 , ⋯ の同時分布が多変量ガウス過程に従う とき、以下のように表現する。 – 𝑓 ∼ 𝐺𝑃 𝑚, 𝐾 • 入力𝑥間の類似度は、以下で表される。 – 𝑘 𝑥, 𝑥′ = 𝜏exp{− 𝑥−𝑥ℎ 2 2𝑙2 }
𝜏で振れ幅、𝑙で密度を調整
さまざまなカーネル • 線形カーネル – 𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ •
指数カーネル – 𝑘 𝑥, 𝑥′ = exp{− 𝑥−𝑥′ 𝑙 } • 周期カーネル – 𝑘 𝑥, 𝑥′ = exp{𝜏cos 𝑥−𝑥′ 𝑙 }
例:出生日の分析 • 誕生日ごとの誕生頻度が知りたい。 • 1969年-1988年のアメリカが対象。 • 𝑦𝑡 𝑡 = 𝑓1
𝑡 + 𝑓2 𝑡 + 𝑓3 𝑡 + 𝑓4 𝑡 + 𝑓5 𝑡 + 𝜖𝑡 – 𝑡は1969年1月1日から数えた日数
長期トレンド 𝑓1 𝑡 ∼ 𝐺𝑃 0, 𝑘1 , 𝑘1 𝑡,
𝑡′ = 𝜎1 2exp − 𝑡 − 𝑡′ 2 2𝑙1 2
短期トレンド 𝑓2 𝑡 ∼ 𝐺𝑃 0, 𝑘2 , 𝑘2 𝑡,
𝑡′ = 𝜎2 2exp − 𝑡 − 𝑡′ 2 2𝑙2 2
曜日トレンド 𝑓3 𝑡 ∼ 𝐺𝑃 0, 𝑘3 , 𝑘3 𝑡,
𝑡′ = 𝜎3 2exp − 2𝑠𝑖𝑛2 𝜋 𝑡 − 𝑡′ /7 2𝑙3,1 2 exp − 𝑡 − 𝑡′ 2 2𝑙3,2 2
日次トレンド(季節トレンド) 𝑓4 𝑡 ∼ 𝐺𝑃 0, 𝑘4 , 𝑘4 𝑡,
𝑡′ = 𝜎4 2exp − 2𝑠𝑖𝑛2 𝜋 𝑡 − 𝑡′ /365.25 2𝑙4,1 2 exp − 𝑡 − 𝑡′ 2 2𝑙4,2 2
特定の日のトレンド 𝑓5 𝑡 = 𝐼𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑎𝑦 𝑡 𝛽𝑎 + 𝐼𝑤𝑒𝑒𝑘𝑒𝑛𝑑 𝑡
𝐼𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑑𝑎𝑦 𝑡 𝛽𝑏
APPENDIX
非ガウス尤度への対応 • 潜在関数𝑓の事後分布 – 𝑝 𝑓|𝑥, 𝑦, 𝜃, 𝜙 ∝
𝑝 𝑦|𝑓, 𝜙 𝑝 𝑓|𝑥, 𝜃 • 正規分布で近似 – 𝑝 𝑓|𝑥, 𝑦, 𝜃, 𝜙 ≈ 𝑁 𝑓| መ 𝑓, 𝛴 – 𝛴−1 = 𝐾 𝑥, 𝑥 + 𝑊 – 𝑊 = 𝑑2 𝑑𝑓2 log𝑝(𝑦 𝑓𝑖 , 𝜙) 𝑓𝑖= 𝑓𝑖 • 予測分布も得られる – 𝑝 𝑦𝑖 | 𝑥𝑖 , 𝑥, 𝑦, 𝜃, 𝜙
さらに柔軟なモデリング • 𝑝 𝑦|𝑓 = 𝑒𝑓 𝑦 ∫ 𝑒𝑓 𝑦′
𝑑𝑦′ – 𝑓 ∼ 𝐺𝑃 𝑚, 𝐾 – 𝑘 𝑦, 𝑦′ = 𝜏2exp − 𝑦−𝑦′ 2 2𝑙2 – 𝑓の積分が難しいので、有限の基底関数などを使おう。