Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロから作るDeepLearning 第7章前半ざっくりまとめ
Search
dproject21
February 20, 2017
Science
0
1k
ゼロから作るDeepLearning 第7章前半ざっくりまとめ
dproject21
February 20, 2017
Tweet
Share
More Decks by dproject21
See All by dproject21
ISTQB/JSTQBシラバスから学ぶAgileTesting / A guide of agile testing based on ISTQB syllabus
dproject21
4
3.6k
JSTQB Advanced Level 模擬問題作成方法 / methodology to questions creation for JSTQB advanced level
dproject21
3
1.4k
試験に絶対出ないJSTQB AL TA,TM問題 / Questions that will never be given on the exam of JSTQB advanced level
dproject21
0
1.5k
The official zip code book is terrible. And what should I do with the address you wrote.
dproject21
0
180
TDD applied Data Cleansing
dproject21
0
1.9k
Data preprocessing for MachineLearning/BI by Golang and MySQL UDF
dproject21
1
920
高精度名寄せシステムを支える テキスト処理 (の、ほんのさわり)
dproject21
3
2.5k
ゼロから作るDeepLearning 第5章 誤差逆伝播法による重み更新を追ってみる
dproject21
0
1.1k
ゼロから作るDeepLearning 第6章ざっくりまとめ
dproject21
2
1.4k
Other Decks in Science
See All in Science
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
930
創薬における機械学習技術について
kanojikajino
16
5.3k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
500
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
420
CV_5_3dVision
hachama
0
140
機械学習 - SVM
trycycle
PRO
1
820
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
230
統計学入門講座 第2回スライド
techmathproject
0
130
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
210
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
900
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.2k
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Faster Mobile Websites
deanohume
307
31k
Raft: Consensus for Rubyists
vanstee
140
7k
The World Runs on Bad Software
bkeepers
PRO
69
11k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
「ゼロから作るDeepLearning」 第7章前半ざっくりまとめ (7.3章「プーリング」まで) 2017.2.20 たのっち @dproject21
この本のざっくりまとめです • 「ゼロから作るDeepLearning」斎藤 康毅 著 オライリー・ジャパンより2016年9⽉ 発⾏ https://www.oreilly.co.jp/books/9784873117584/ • 公式サポートページ
https://github.com/oreilly-japan/deep-learning-from-scratch • 第7章「畳み込みニューラルネットワーク」前半部です。 (後半の実装については、次回、資料作ります。) https://deeplearning-yokohama.connpass.com/
第6章までやってきたニューラルネットワークは、 1次元データ(⽩⿊データ)を扱うのに向いていた。 畳み込みニューラルネットワークとは ⼊⼒ データ Affine ReLU Affine ReLU Affine
ReLU Affine Softmax 第7章で取り上げる畳み込みニューラルネットワークは、 3次元データ(カラー画像データ)を扱えるニューラルネットワーク。 ⼊⼒ データ Conv ReLU Pooling ReLU Affine Softmax Conv ReLU Pooling Conv ReLU Affine
畳み込みニューラルネットワークとは 畳み込みニューラルネットワークでは、 ・3次元データを扱う「畳み込み層(Convolutionレイヤ)」 ・特徴抽出を⾏う「プーリング層(Poolingレイヤ)」 が新たに加わる。 ・前半ではConv-ReLU-(Pooling)の組み合わせを⽤いる ・出⼒に近い層ではAffine-ReLUの組み合わせを⽤いる ・出⼒層ではAffine-Softmaxの組み合わせを⽤いる ⼊⼒ データ
Conv ReLU Pooling ReLU Affine Softmax Conv ReLU Pooling Conv ReLU Affine
畳み込み層とは 「畳み込み演算」(画像処理で⾔うところの「フィルタ演算」)を⾏う。 ⼊⼒データ(4, 4)に対してフィルタ(3, 3)の積和演算を⾏う。 1 2 3 0 0
1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データ フィルタ 出⼒
畳み込み層とは 1 2 3 0 0 1 2 3 3
0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データに対して、フィルタを⼀定の間隔でスライドさせながら、 演算を⾏う。
畳み込み層とは 1 2 3 0 0 1 2 3 3
0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データに対して、フィルタを⼀定の間隔でスライドさせながら、 演算を⾏う。
畳み込み層とは バイアスは、フィルタ適⽤後のデータに対して加算する。 1 2 3 0 0 1 2 3
3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データ フィルタ 出⼒ + 18 19 9 18 3 バイアス
畳み込み層とは 出⼒サイズを整えるために「パディング」を⽤いる。 ⼊⼒データの周囲を固定データ(0など)で埋める。 畳み込み演算を何度も⾏うとサイズが⼩さくなっていき、演算不能な状態に なっていく。これを回避するためにパディングを持ちいる。 1 2 3 0 0
1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ ⼊⼒データ フィルタ 出⼒ 7 12 10 2 4 15 16 10 10 6 15 6 8 10 4 3
畳み込み層とは フィルタの移動間隔を「ストライド」と呼ぶ。 ストライドを⼤きくすると、出⼒サイズは⼩さくなる。 パディングを⼤きくすると、出⼒サイズは⼤きくなる。 1 2 3 0 0 1
2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ ⼊⼒データ フィルタ 出⼒ 7 12 10 2 4 15 16 10 10 6 15 6 8 10 4 3
畳み込み層とは 3次元データの畳み込みを⾏う際は、チャンネルの数だけフィルタを⽤意して、 畳込み演算を⾏う。 ⊛ ⼊⼒データ フィルタ 出⼒
畳み込み層とは 各チャンネルごとに出⼒(特徴マップ)を⽤意したい場合、複数のフィルタを ⽤いる。 ⊛ ⼊⼒データ フィルタ 出⼒
プーリング層とは プーリングは縦・横⽅向の空間を⼩さくする演算。 あるサイズ(ここでは2×2)の領域から最⼤値を取って集約していく。 ※最⼤値だけでなく平均も扱えるが、画像認識の場合は主に最⼤値で⾏う。 1 2 3 0 0 1
2 3 3 0 1 2 2 3 0 1 2 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 4 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 4 2