Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Statistical Thinking for Data Science
Search
Chris Fonnesbeck
February 08, 2015
Science
5
1.1k
Statistical Thinking for Data Science
PyTennessee 2015 Keynote Address
Chris Fonnesbeck
February 08, 2015
Tweet
Share
More Decks by Chris Fonnesbeck
See All by Chris Fonnesbeck
Structured Decision-making and Adaptive Management For The Control Of Infectious Disease
fonnesbeck
3
110
Estimating Microbial Diversity
fonnesbeck
0
120
Bayesian Statistical Analysis: A Gentle Introduction
fonnesbeck
4
630
Other Decks in Science
See All in Science
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
120
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
Hakonwa-Quaternion
hiranabe
1
110
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
160
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
510
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
490
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
420
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
130
2025-06-11-ai_belgium
sofievl
1
130
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
410
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
130
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
43
7.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Building Applications with DynamoDB
mza
95
6.5k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Become a Pro
speakerdeck
PRO
29
5.4k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
Statistical Thinking for Data Science Chris Fonnesbeck Vanderbilt University
None
None
21/22 falling 7+ stories survived
2 fell together
40% at night
“Even more surprising, the longer the fall, the greater the
chance of survival.”
2 to 32 stories (average = 5.5)
?
"... 132 such victims were admitted to the Animal Medical
Center on 62nd Street in Manhattan ..."
"Found" Data
convenience sample
Missing Data
Representative
Statistical Issues
Big Data
“With enough data, the numbers speak for themselves ” Chris
Anderson, Wired
Alfred Landon
Literary Digest Straw Poll
"Next week, the first answers from these ten million will
begin the incoming tide of marked ballots, to be triple-checked, verified, five-times cross-classified and totalled."
2.4 million returns
41 - 55
None
George Gallup
Sampled 50,000
66%
Random Sampling
None
Bias
None
None
Self-selection Bias
None
For some estimate of unknown quantity ,
p = 0.5 sample_sizes = [10, 100, 1000, 10000, 100000]
replicates = 1000 biases = [] for n in sample_sizes: bias = np.empty(replicates) for i in range(replicates): true_sample = np.random.normal(size=n) negative_values = true_sample<0 missing = np.random.binomial(1, p, n).astype(bool) observed_sample = true_sample[~(negative_values & missing)] bias[i] = observed_sample.mean() biases.append(bias)
None
Accuracy Mean Squared Error
“The numbers have no way of speaking for themselves” Nate
Silver
White House Big Data Partners Workshop
White House Big Data Partners Workshop 19 Participants 0 Statisticians
NSF Working Group on Big Data
NSF Working Group on Big Data 100 experts convened 0
statisticians
Moore Foundation Data Science Environments
Moore Foundation Data Science Environments 0 directors with statistical expertise
NIH BD2K Executive Committee
NIH BD2K Executive Committee 17 committee members 0 statisticians
Feeling left out?
It's our own fault
“Almost everything you learned in your college statistics course was
wrong”
Typical introductory statistics syllabus 1.Descriptive statistics and plotting
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing 4.Experimental design
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing 4.Experimental design 5.ANOVA
Statistical Hypothesis Testing
None
None
Test Statistic
T-statistic
None
None
None
p-value
None
None
false positive rate
"The value for which , or 1 in 20, is
1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation ought to be considered significant or not." R.A. Fisher
p-value
the probability that the observed differences are due to chance
the probability that the observed differences are due to chance
a measure of the reliability of the result
a measure of the reliability of the result
the probability that the null hypothesis is true
the probability that the null hypothesis is true
"If an experiment were repeated infinitely, p represents the proportion
of values more extreme than the observed value, given that the null hypothesis is true."
H0 : Mean duckling body mass did not differ among
years.
H0 : Mean duckling body mass did not differ among
years.
H0 : The prevalence of autism spectrum disorder for males
and females were equal.
H0 : The prevalence of autism spectrum disorder for males
and females were equal.
H0 : The density of large trees in logged and
unlogged forest stands were equal
H0 : The density of large trees in logged and
unlogged forest stands were equal
Statistical Straw Man
Statistical hypotheses are not interesting
Hypothesis tests are not decision support tools
Multiple Comparisons
None
Family-wise Error Rate >>> 1. - (1. - 0.05) **
20 0.6415140775914581
import seaborn as sb import pandas as pd n =
20 r = 36 df = pd.concat([pd.DataFrame({'y':np.random.normal(size=n), 'x':np.random.random(n), 'replicate':[i]*n}) for i in range(r)]) sb.lmplot('x', 'y', df, col='replicate', col_wrap=6)
None
Statistically Significant!
None
"Despite a large statistical literature for multiple testing corrections, usually
it is impossible to decipher how much data dredging by the reporting authors or other research teams has preceded a reported research finding."
What's the Alternative?
Build models and use them to estimate things we care
about
Effect size estimation
Data-generating Model
None
None
Florida manatee Trichechus manatus
None
None
None
occupied?
occupied? available?
occupied? available? seen?
None
Estimating visibility
None
None
None
None
None
None
None
Bayesian Statistics
None
None
Bayes' Formula
Probabilistic Modeling
Evidence-based Medicine
ASD Interventions Research 19 independent studies 27 different interventions
None
None
None
None
None
None
None
None
None
None
None
“While everyone is looking at the polls and the storm,
Romney’s slipping into the presidency. ”
None
Heirarchical modeling
Pollster effects
None
None
None
None
Data Science
Data
Science
Those who ignore statistics are condemned to re-invent it. --
Brad Efron