Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian Statistical Analysis: A Gentle Introdu...
Search
Chris Fonnesbeck
December 05, 2011
Research
4
610
Bayesian Statistical Analysis: A Gentle Introduction
Get to know the Reverend Bayes.Reverend
Chris Fonnesbeck
December 05, 2011
Tweet
Share
More Decks by Chris Fonnesbeck
See All by Chris Fonnesbeck
Statistical Thinking for Data Science
fonnesbeck
5
1.1k
Structured Decision-making and Adaptive Management For The Control Of Infectious Disease
fonnesbeck
3
100
Estimating Microbial Diversity
fonnesbeck
0
110
Other Decks in Research
See All in Research
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
440
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
460
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
2
120
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
0
120
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
EBPMにおける生成AI活用について
daimoriwaki
0
280
Weekly AI Agents News! 1月号 アーカイブ
masatoto
1
160
複数データセットを用いた動作認識
yuyay
0
110
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
210
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
2
150
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
What's in a price? How to price your products and services
michaelherold
244
12k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Into the Great Unknown - MozCon
thekraken
35
1.6k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Code Reviewing Like a Champion
maltzj
521
39k
Unsuck your backbone
ammeep
669
57k
Visualization
eitanlees
146
15k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Bayesian Statistical Analysis A Gentle Introduction Center for Quantitative Sciences
Workshop 18 November 2011 Christopher J. Fonnesbeck Monday, December 5, 11
What is Bayesian Inference? Monday, December 5, 11
Practical methods for making inferences from data using probability models
for quantities we observe and about which we wish to learn. Gelman et al., 2004 Monday, December 5, 11
Rev. Thomas Bayes Monday, December 5, 11
Rev. Thomas Bayes Simon Laplace Monday, December 5, 11
Conclusions in terms of probability statements p( |y) unknowns observations
Monday, December 5, 11
Classical inference conditions on unknown parameter p(y| ) unknowns observations
Monday, December 5, 11
Classical vs Bayesian Statistics Monday, December 5, 11
Frequentist Monday, December 5, 11
Frequentist observations random Monday, December 5, 11
Frequentist model, parameters fixed Monday, December 5, 11
Frequentist Inference Monday, December 5, 11
Choose an estimator ˆ µ = P xi n based
on frequentist (asymptotic) criteria Monday, December 5, 11
Choose a test statistic based on frequentist (asymptotic) criteria t
= ¯ x µ s/ p n Monday, December 5, 11
Bayesian Monday, December 5, 11
Bayesian observations fixed Monday, December 5, 11
Bayesian model, parameters “random” Monday, December 5, 11
Components of Bayesian Statistics Monday, December 5, 11
Specify full probability model 1 Pr(y| )Pr( |⇥)Pr(⇥) Monday, December
5, 11
data y Monday, December 5, 11
data y covariates X Monday, December 5, 11
data y covariates X parameters ✓ Monday, December 5, 11
data y covariates X parameters ✓ missing data ˜ y
Monday, December 5, 11
2 Calculate posterior distribution Pr( |y) Monday, December 5, 11
3Check model for lack of fit Monday, December 5, 11
Why Bayes? ? Monday, December 5, 11
“... the Bayesian approach is attractive because it is useful.
Its usefulness derives in large measure from its simplicity. Its simplicity allows the investigation of far more complex models than can be handled by the tools in the classical toolbox.” Link and Barker (2010) Monday, December 5, 11
coherence X ˜ y y ✓ Monday, December 5, 11
Interpretation Monday, December 5, 11
Pr( ¯ Y 1.96 ⇥ ⇥ n < µ <
¯ Y + 1.96 ⇥ ⇥ n ) = 0.95 Confidence Interval Pr(a(Y ) < ✓ < b(Y )|✓) = 0.95 Monday, December 5, 11
Credible Interval Pr(a(y) < ✓ < b(y)|Y = y) =
0.95 Monday, December 5, 11
Uncertainty Monday, December 5, 11
C alpha N z b_psi beta a_psi pi mu psi
Ntotal occupied a b Ndist psi z alpha pi N beta mu occupied N alpha beta N alpha beta Complex Models Monday, December 5, 11
Probability Monday, December 5, 11
Pr(A) = m n A = an event of interest
m = no. of favourable outcomes n = total no. of possible outcomes (1) classical Monday, December 5, 11
all elementary events are equally likely Monday, December 5, 11
Pr(A) = lim n→∞ m n n = no. of
identical and independent trials m = no. of times A has occurred (2) frequentist Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
A = “Chris has Type A blood” Monday, December 5,
11
A = “Titans will win Superbowl XLVI” Monday, December 5,
11
A = “The prevalence of diabetes in Nashville is >
0.15” Monday, December 5, 11
(3) subjective Pr(A) Monday, December 5, 11
Measure of one’s uncertainty regarding the occurrence of A Pr(A)
Monday, December 5, 11
Pr(A|H) Monday, December 5, 11
A = “It is raining in Atlanta” Monday, December 5,
11
Pr(A|H) = 0.5 Monday, December 5, 11
Pr( A|H ) = ⇢ 0 . 4 if raining
in Nashville 0 . 25 otherwise Monday, December 5, 11
Pr(A|H) = 1, if raining 0, otherwise Monday, December 5,
11
S A Pr(A) = area of A area of S
Monday, December 5, 11
S A B A ∩ B Pr(A ⇥ B) =
Pr(A) + Pr(B) Pr(A ⇤ B) Monday, December 5, 11
A A ∩ B Pr(B|A) = Pr(A B) Pr(A) Monday,
December 5, 11
A A ∩ B conditional probability Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
Independence Pr(B|A) = Pr(B) Monday, December 5, 11
S A B A ∩ B Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
S A B A ∩ B Pr(A|B) = Pr(A B)
Pr(B) Pr(B|A) = Pr(A B) Pr(A) Monday, December 5, 11
Pr(A B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A) Monday, December 5, 11
Bayes Theorem Pr(B|A) = Pr(A|B)Pr(B) Pr(A) Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) Pr(y) Posterior
Probability Prior Probability Likelihood of Observations Normalizing Constant Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) R Pr(y|
)Pr( )d Monday, December 5, 11
“proportional to” Pr( |y) Pr(y| )Pr( ) Monday, December 5,
11
Pr( |y) Pr(y| )Pr( ) Posterior Prior Likelihood Monday, December
5, 11
information p( |y) p(y| )p( ) Monday, December 5, 11
“Following observation of , the likelihood contains all experimental information
from about the unknown .” θ y y L(✓|y) Monday, December 5, 11
binomial model data parameter sampling distribution of X p(X|✓) =
✓ N n ◆ ✓x (1 ✓)N x Monday, December 5, 11
binomial model likelihood function for θ L(✓|X) = ✓ N
n ◆ ✓x (1 ✓)N x Monday, December 5, 11
prior distribution p(θ|y) ∝ p(y|θ)p(θ) Monday, December 5, 11
Prior as population distribution Monday, December 5, 11
Monday, December 5, 11
Prior as information state Monday, December 5, 11
Monday, December 5, 11
All plausible values Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
Bayesian analysis is subjective Monday, December 5, 11
Statistical analysis is subjective Monday, December 5, 11
“... all forms of statistical inference make assumptions, assumptions which
can only be tested very crudely and can almost never be verified.” - Robert E. Kass Monday, December 5, 11
3 Model checking Monday, December 5, 11
1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 x
p(x) separation Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
weakly-informative prior -4 -2 0 2 4 0.0 0.1 0.2
0.3 0.4 xrange Pr(x) Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
example: genetic probabilities Monday, December 5, 11
X-linked recessive Monday, December 5, 11
Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Mother is
the woman a carrier? Monday, December 5, 11
Pr(θ = 1) = Pr(θ = 0) = 1 2
Pr(θ = 1) Pr(θ = 0) = 1 prior odds Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Son Son
Mother Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 “likelihood ratio” p(y1 = 0, y2 = 0|θ = 1) p(y1 = 0, y2 = 0|θ = 0) = 0.25 1 = 1/4 Monday, December 5, 11
what about Mom? Monday, December 5, 11
what about Mom? y = {y1 = 0, y2 =
0} Pr( = 1|y) = Pr(y| = 1)Pr( = 1) Pr(y) = Pr(y| = 1)Pr( = 1) P ✓ Pr(y| )Pr( ) Monday, December 5, 11
y = {y1 = 0, y2 = 0} Monday, December
5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) y = {y1 = 0, y2 = 0} Monday, December 5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) = (0.25)(0.5) (0.25)(0.5) + (1.0)(0.5) = 0.125 0.625 = 0.2 y = {y1 = 0, y2 = 0} Monday, December 5, 11
3rd unaffected son? Pr( = 1|y3 ) = (0.5)(0.2) (0.5)(0.2)
+ (1)(0.8) = 0.111 posterior from previous Monday, December 5, 11
Hierarchical Models Monday, December 5, 11
effectiveness of cardiac surgery example Monday, December 5, 11
Hospital Operations Deaths A 47 0 B 148 18 C
119 8 D 810 46 E 211 8 F 196 13 G 148 9 H 215 31 I 207 14 J 97 8 K 256 29 L 360 24 Monday, December 5, 11
clustering induces dependence between observations Monday, December 5, 11
parameters sampled from common distribution j hospital j survival rate
Monday, December 5, 11
population distribution j f(⇥) hyperparameters Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
µ, σ2 hyperparameters Monday, December 5, 11
, ϕµ ϕσ θ1 θ2 θk y1 y2 yk ...
... deaths parameters µ, σ2 hyperparameters Monday, December 5, 11
non-hierarchical models of hierarchical data can easily be underfit or
overfit Monday, December 5, 11
“experiments” j = 1, . . . , J likelihood
∼ Binomial( , ) deaths j operations j θj logit( ) ∼ N(µ, ) θi σ2 population model µ ∼ , ∼ Pµ σ2 Pσ priors Monday, December 5, 11
0/47 = 0 18/148 = 0.12 8/119 = 0.07 46/810
= 0.06 Monday, December 5, 11
Monday, December 5, 11
Monday, December 5, 11