Upgrade to Pro — share decks privately, control downloads, hide ads and more …

DataTalkChill3 - Intro to MLOps

DataTalkChill3 - Intro to MLOps

Introduction to MLOps: What and Why
By Fon, Kamolphan Liwprasert

Presented at DataTalkChill #3 meet up by DataTH.com on Mar 28th, 2021

Note: some part of the slide is in Thai language.

Avatar for Kamolphan Liwprasert

Kamolphan Liwprasert

March 28, 2021
Tweet

More Decks by Kamolphan Liwprasert

Other Decks in Technology

Transcript

  1. about:me FON Kamolphan Liwprasert Senior Machine Learning Engineer @Sertis Master

    in Computer Science student @GeorgiaTech Road to Data Engineer instructor @DataTH
  2. https://youtu.be/VfcY0edoSLU นิยาม AI System แบบงาย ๆ AI System = *

    Software Engineering DevOps Data Engineering Data Science ML/AI Research ML Engineering Code + Model + DATA
  3. 3 Levels of ML Software 1. Data ▸ Data Engineering

    Pipelines ▸ Data Quality is a key 🔑 2. Model ▸ Machine Learning Pipelines ▸ Train, Evaluate, Test 󰙤 3. Code ▸ Model Serving & Predictions ▸ Deployment strategies & Infra 🐳☁
  4. MLOps Continuous Training Continuous Monitoring CI/CD Concept drift Logging Canary

    Deployment A/B Testing Data-Centric AI vs Model-Centric AI Monitoring Healthcheck Testing Data Version Control Experiment Tracking Data Lineage Lifecycle Automation Data Quality Data Labeling Data Augmentation Train & Evaluate Model Versioning Model Serving & Deployment Optimization Error Reporting
  5. To make great products: do machine learning like the great

    engineer you are, not like the great machine learning expert you aren’t. Martin Zinkevich https://developers.google.com/machine-learning/guides/rules-of-ml
  6. 1 2 3 4 Benefit of MLOps Automate process ชวยลด

    Technical Debt ในระยะยาว ได Pipeline ที่ดี ทําให data scientist ทํางานรวมกันไดงาย ชวยลดความเสี่ยง และขอผิด พลาด human error ปรับปรุง และ Maintain ได งาย สามารถ scale ได
  7. Concerns • แตละ tool มี usecase ที่เหมาะสมของเครื่องมือแตละอยาง ⚒ • Pricing

    $$$$ บาง tool มีคาใชจายคอนขางสูง 💸 • Over-engineering : Perfect is the enemy of good
  8. References & Resources • MLOps https://ml-ops.org • Introducing MLOps, Mark

    Treveil and team (O’Reilly Media). • Rules of Machine Learning, Martin Zinkevich https://developers.google.com/machine-learning/guides/rules-of-ml • Hidden Technical Debt in Machine Learning Systems https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf • What Is MLOps?, Nvidia https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/ • A Chat with Andrew on MLOps: From Model-centric to Data-centric AI, Andrew Ng https://youtu.be/06-AZXmwHjo • Let’s talk about MLOps, Christian Barra https://youtu.be/K5x6dxjY1vA • MLOps: Continuous delivery and automation pipelines in machine learning, Google Cloud https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation -pipelines-in-machine-learning • Awesome-mlops, visenger (on GitHub) https://github.com/visenger/awesome-mlops • CML, powered by DVC https://cml.dev https://dvc.org
  9. Thank you 😃 Feedback is a gift 🎁 bit.ly/feedback-form-fon Sertis

    is hiring 󰠁 bit.ly/sertis-apply-now Road to Data Engineer course 🎓 bit.ly/road2de-datatalk *ลด 5% ถึงเที่ยงคืนวันที่ 28 มี.ค.นี้