Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Attention機構を使った 配車車両未確定状態における タクシー到着時間予測
Search
fumihiko takahashi
March 05, 2019
Programming
1
89
Attention機構を使った 配車車両未確定状態における タクシー到着時間予測
第81回情報処理学会全国大会(IPSJ2019)で一般セッションで発表した際の資料
https://www.ipsj.or.jp/event/taikai/81/
fumihiko takahashi
March 05, 2019
Tweet
Share
More Decks by fumihiko takahashi
See All by fumihiko takahashi
単一の深層学習モデルによる不確実性の定量化の紹介 ~その予測結果正しいですか?~
ftakahashi
3
890
明日使えるかもしれないLoss Functionsのアイディアと実装
ftakahashi
16
4.4k
時系列予測にTransformerは有効か?
ftakahashi
2
390
SIGSPATIAL2020 参加報告
ftakahashi
3
840
ドライブレコーダーの映像で Scene Text Recognitionする
ftakahashi
0
1.2k
ドライブレコーダーの Scene Text Recognitionにおける Multi-task Learning
ftakahashi
1
3.3k
JapanTaxi R&Dの取り組み事例
ftakahashi
0
94
jsai2019.pdf
ftakahashi
0
420
Other Decks in Programming
See All in Programming
Atomics APIを知る / Understanding Atomics API
ssssota
1
150
MCPサーバー「モディフィウス」で変更容易性の向上をスケールする / modifius
minodriven
8
1.5k
CloudflareのSandbox SDKを試してみた
syumai
0
160
Flutterアプリ運用の現場で役立った監視Tips 5選
ostk0069
1
460
2026年向け会社紹介資料
misu
0
220
Register is more than clipboard
satorunooshie
1
480
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
170
なぜ強調表示できず ** が表示されるのか — Perlで始まったMarkdownの歴史と日本語文書における課題
kwahiro
12
6.1k
モデル駆動設計をやってみよう Modeling Forum2025ワークショップ/Let’s Try Model-Driven Design
haru860
0
160
無秩序からの脱却 / Emergence from chaos
nrslib
1
850
例外処理を理解して、設計段階からエラーを見つけやすく、起こりにくく #phpconfuk
kajitack
12
6.2k
しっかり学ぶ java.lang.*
nagise
1
380
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Six Lessons from altMBA
skipperchong
29
4.1k
Balancing Empowerment & Direction
lara
5
750
KATA
mclloyd
PRO
32
15k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Code Review Best Practice
trishagee
72
19k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Done Done
chrislema
186
16k
Making Projects Easy
brettharned
120
6.5k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.6k
Transcript
Attention機構を使った 配⾞⾞両未確定状態における タクシー到着時間予測 JapanTaxi株式会社 モビリティ研究開発部 ⾼橋⽂彦 2019.03.16 第81回情報処理学会全国⼤会
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 2
タクシー配⾞アプリ「JapanTaxi」 • マップ上で指定したピン位置に タクシーを⼿配 • 乗⾞料⾦の決済もアプリ上で可能 • 全国47都道府県で約7万台(全国 のタクシー⾞両1/3)が対応 • 600万以上ダウンロード
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 3
注⽂キャンセルの問題 Ωϟϯηϧ ंจ ୳ं։࢝ ंܾఆΛ௨ ड ंػձͷଛࣦ Ϣʔβʔ ंγεςϜ υϥΠόʔ Ωϟϯηϧ௨ ܴं։࢝
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 4
配⾞時間期待値のギャップ ͘Β͍Ͱ དྷΔ͔ͳʁ ͔͔ΔͳΒ ଞͷަ௨खஈΛ ͓͏ Ωϟϯηϧ ंจ ୳ं։࢝ ౸ண࣌ؒΛܭࢉ ड ंػձͷଛࣦ Ϣʔβʔ ंγεςϜ υϥΠόʔ Ωϟϯηϧ௨ ܴं։࢝
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 5
期待値調整をするために到着予想時間を表⽰ ͘Β͍Ͱ དྷΔ͔ͳʁ ंจ ͠ͳ͍ Ϣʔβʔ ंγεςϜ υϥΠόʔ ࣄલʹ౸ண༧࣌ؒΛ ఏࣔͯ͠ظௐΛ ߦ͏ ͘Β͍Ͱ དྷΔ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 6
研究⽬的:お迎え場所への到着時間予測 ީิ̍ త • λΫγʔ͕͓ܴ͑ॴʹ౸ண͢Δ ·Ͱʹ͔͔Δ࣌ؒΛ༧ଌ͢Δ • ͓ܴ͑ॴʹ͔͏λΫγʔ֬ ఆ͍ͯ͠ͳ͍ ͓ܴ͑ॴ ީิ ީิ̏ ީิ̐
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 7
関連研究 • ػցֶशʹΑΔ౸ண࣌ؒ༧ଌ • υϥΠόʔಛྔͬͨ౸ண࣌ؒ༧ଌ<> • ܦ࿏Λಓ࿏͝ͱʹ3//Ͱ࠶ؼతʹೖྗ<> [1] Heng-Tze et al. Wide & Deep Learning for Recommender Systems. DLRS 2016. • ܦ࿏୳ࡧʹΑΔ౸ண࣌ؒ༧ଌ • ग़ൃ͔Βతͷܦ࿏୳ࡧ͠ܦ࿏ͷڑʹԠͯ࣌ؒ͡Λܭࢉ [2] Fei Wang,et al. Residual attention network for image classification. CVPR 2017.
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 8
提案する到着時間予測モデル • ػցֶशϕʔεख๏ • χϡʔϥϧωοτϫʔΫϞσϧ • ೖྗɿं྆ಛྔͱڥಛྔ • ग़ྗɿ౸ண࣌ؒ <T> • ϩεؔɿฏۉઈରޡࠩ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 9
提案する到着時間予測モデル:⾞両特徴量 • ंީิͷं྆ͷಛྔ • ಛྔ • ग़ൃͷҢܦ • ͓ܴ͑ॴҢܦ • ग़ൃ࣌ͷํɾ • ͓ܴ͑ॴͷํɾઢڑ • ઢڑ͕͍ۙॱ൪
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 10
提案する到着時間予測モデル:Attention機構 • ػց༁ը૾ೝࣝͳͲͰΘΕ ΔωοτϫʔΫߏ • ೖྗʹԠͯ͢͡Δ͖ಛྔ ʹେ͖ͳॏΈ͕༩͞ΕΔ • ࣮ࡍʹं͞ΕΔं྆ͷॏΈ͕େ ͖͘ͳΔ͜ͱΛظ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 11
提案する到着時間予測モデル:環境特徴量 • ं྆Ҏ֎ͷಛྔ • ಛྔ • ༵ • • ࣌ؒ • ॕ • ٳ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 12
実験1: 予測精度評価実験 • ࣮ࡍͷλΫγʔͷंσʔλΛ༻ • λΫγʔձࣾ<ຊަ௨> ظؒ<d݄> Ҭ<౦ژ> • ༧ଌͱ࣮ଌͷฏۉઈରޡࠩ ."& • ༧ଌͷํ͕<T>Ҏ্ׂ͍߹ 5PP'BTUFS3BUF • ܭࢉॲཧ࣌ؒ &MBQTFE5JNF • ఏҊϞσϧΛଞͷϞσϧͱൺֱ AttentionNeuralModel 機械学習ベース 提案モデル NeuralModel 機械学習ベース 提案するモデルの Attention 機構部分を使わないモデル RouteSearchAverage 経路探索ベース 各車両から目的地までの時間を経路探索によって計算しそ の平均値を計算 RouteSearchOneBest 経路探索ベース 直線距離がもっとも近い車両から目的地までの時間を経路 探索によって計算
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 13
予測精度の評価結果 • ఏҊख๏ "UUFOUJPO/FVSBM.PEFM ͕࠷."&ͱ5PP'BTUFS3BUF ͕খ͍͞ • 3PVUF4FBSDI0OF#FTU͕."&͕େ͖͍ ˠ ଞͷީิߟྀ͢Δඞཁ͋Γ • ػցֶशϕʔεͷํ͕ߴ MAE Too Faster Rate Elapsed Time AttentionNeuralModel 156.11 0.2430 0.0360 NeuralModel 164.02 0.3247 0.0385 RouteSearchAverage 166.72 0.2527 0.0729 RouteSearchOneBest 215.70 0.4373 0.0731
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 14
到着時間ごとの精度 • ౸ண͕͍࣌ؒ߹ʹ"UUFOUJPO/FVSBM.PEFMͷਫ਼͕͍ ˠ ֶशσʔλ͕গͳ͍͜ͱ͕ݪҼ • ౸ண͕͍࣌ؒ߹ʹͲͪΒਫ਼͕͍ ˠ ಥൃతͳौͳͲΛଊ͑ΒΕ͍ͯͳ͍ 3PVUF4FBSDI"WFSBHF "UUFOUJPO/FVSBM.PEFM
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 15
実験2: アプリを使ったキャンセル率評価実験 • ఏҊϞσϧΛͬͨ༧ଌ౸ண࣌ؒΛදࣔ • දࣔͷ༗ແͰ"#ςετ • ΩϟϯηϧͱจΛൺֱ͠ධՁ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 16
アプリでのABテスト結果 • ౸ண࣌ؒ༧ଌΛදࣔͨ͠ํ͕༏ҐʹΩϟϯηϧ͕͍ • จେ͖͘ݮΔ͜ͱͳ͔ͬͨ
Proprietary and Confidential ©2017 JapanTaxi, Inc. All Rights Reserved 17
まとめ [研究背景] • 配⾞アプリにおいて注⽂のキャンセルが問題 • 注⽂前に予想到着時間を表⽰することでキャンセル率を減ら したい [研究⽬的] • 複数の配⾞候補がある状況において到着時間を予測 [⼿法] • Attention機構を⽤いたニューラルモデル [結果] • 提案⼿法は他の⼿法に⽐べて平均絶対誤差が⼩さい • アプリに導⼊して効率的にキャンセルを減らせることを確認
〒102-0094 東京都千代田区紀尾井町3-12 3-12 Kioicho Chiyoda-ku, Tokyo 102-0094 Japan TEL 03-6265-6265
FAX 03-3239-8115 www.japantaxi.co.jp 文章·画像等の内容の無断転載及び複製等の行為はご遠慮ください。 Proprietary and Confidential ©2019 JapanTaxi, Inc. All Rights Reserved