Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報処理学会-全国大会2024-大規模言語モデルの分散並列学習
Search
Kazuki Fujii
December 14, 2025
Research
0
6
情報処理学会-全国大会2024-大規模言語モデルの分散並列学習
Kazuki Fujii
December 14, 2025
Tweet
Share
More Decks by Kazuki Fujii
See All by Kazuki Fujii
IHPCSS2025-Kazuki-Fujii
fujiikazuki2000
0
5
2024-02-Tokyo-Tech-大規模言語モデルの事前学習知見
fujiikazuki2000
0
14
言語処理学会2024-継続事前学習による日本語に強い大規模言語モデルの構築
fujiikazuki2000
0
13
AWS Summit Japan 2025 Amazon SageMaker HyperPodを利用した日本語LLM(Swallow)の構築 (CUS-02)
fujiikazuki2000
0
14
合成データパイプラインを利用したSwallowProjectに おけるLLM性能向上
fujiikazuki2000
1
270
論文では語られないLLM開発において重要なこと Swallow Projectを通して
fujiikazuki2000
8
1.8k
大規模言語モデルの学習知見
fujiikazuki2000
0
160
自然言語処理のための分散並列学習
fujiikazuki2000
1
590
Other Decks in Research
See All in Research
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
570
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
410
Nullspace MPC
mizuhoaoki
1
630
超高速データサイエンス
matsui_528
2
350
説明可能な機械学習と数理最適化
kelicht
2
850
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
230
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
660
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
510
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
110
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.2k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
280
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
870
Featured
See All Featured
Information Architects: The Missing Link in Design Systems
soysaucechin
0
750
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Leo the Paperboy
mayatellez
4
1.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Statistics for Hackers
jakevdp
799
230k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Google's AI Overviews - The New Search
badams
0
890
4 Signs Your Business is Dying
shpigford
187
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Visualization
eitanlees
150
16k
Designing Experiences People Love
moore
143
24k
Transcript
大規模言語モデルの分散並列学習 東京工業大学 藤井一喜 横田理央 5J-02
2 概要 • Llama 2をベースに日本語コーパスで継続事前学習 • 7B, 13B, 70B のモデル規模にて分散並列学習
• メモリ効率化のための工夫を行った3D Parallelism
3 継続事前学習 Meta Llama 2 Swallow Swallow Corpus
4 学習時に必要なメモリ (backward時) FP16/FP32 Mixed Precison p = parameter数 parameters
gradients optimizer states 2p + 2p + 12p = 16p 必要 注意: activation、中間層の出力、バッチデータ、memory fragmentation などあるため、これだけではない
5 学習時に必要なメモリ (backward時) FP16/FP32 Mixed Precison p = parameter数 parameters
gradients optimizer states 2p + 2p + 12p = 16p + α 必要 → 1つのGPUで学習するのは不可能 → 分散学習
6 分散学習 大規模言語モデルの学習には様々な分散並列化手法がある Data Parallel(=DP) Tensor Parallel(=TP) Pipeline Parallel(=PP)
7 分散学習設定 3D Parallelism (DP, TP, PP)を利用 メモリ効率化のために以下を採用 • SP:
Sequence Parallelism • Distributed Optimizer (DeepSpeed ZeRO Stage1相当)
8 なぜ3D Parallelismなのか 3D ParallelismとFSDPの比較 3D Parallelism FSDP Llama 2
7B 134 TFLOPS/GPU 134 TFLOPS/GPU Llama 2 13B 143 TFLOPS/GPU 135 TFLOPS/GPU Llama 2 70B 158 TFLOPS/GPU 87 TFLOPS/GPU
9 効率的なメモリ消費 (Distributed Optimizer) データ並列 Distributed Optimizer GPU: 1 GPU:
2 GPU: 3 GPU: 1 GPU: 1 GPU: 2 GPU: 3 3D Parallelism + Distributed Optimizer optimizer states optimizer states optimizer states Gradinets optimizer states Gradinets Gradinets Parameters Parameters Parameters
10 トポロジーを考慮した3Dマッピング TP → DP → PP の順に配置 必要な通信量を考慮 TPは大量のAll
Reduce →Tensor Parallel をノード内 Pipeline ParallelはP2P通信 → ノード間 Microsoft Research Blogより
11 学習曲線
12 TFLOPS Swallow Project における TFLOPS Megatron-LM GPT-3 (175B) 51.4
% (=160TFLOPS)
補足資料
14 言語モデルの評価結果 日本語タスク平均スコア
15 学習トークンに対するスケール性
16 学習ライブラリ 1. 3D Parallelism をサポート 2. Llamaアーキテクチャに対応 3. HF
→ Megatron 変換コードあり 詳細 ↓
17 ABCI環境 1 Interconnect InfiniBand HDR 200Gbps x 4 Intranode
NVLink
18 ABCI環境 2 A100 SXM4 PLX PCIe IB HDR PLX
A100 SXM4 IB HDR IB Switch PCIe
19 ABCI環境 3 学習に使用したAノード(A100)は フルバイセクションバンド幅のFat Tree → 通信帯域幅のボトルネックは解消されている FSDP <
3D Parallelism であることは変わりないがABCIの環境では FSDPでも致命的に遅くはならない