Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
試験は暗記より理解 〜効果的な試験勉強とその後への活かし方〜
Search
Fukazawa Shun
April 10, 2025
Technology
0
530
試験は暗記より理解 〜効果的な試験勉強とその後への活かし方〜
Classmethod AI Talks(CATs)「AI試験攻略法と仕事での活用法 〜AWS認定AIプラクティショナー資格本ライター陣が語ります!〜」登壇資料
Fukazawa Shun
April 10, 2025
Tweet
Share
More Decks by Fukazawa Shun
See All by Fukazawa Shun
AIをプライベートや業務で使ってみよう!効果的な認定資格の活かし方
fukazawashun
0
120
AWS認定資格取得に向けた効果的なデベキャン活用法や学習方法について
fukazawashun
1
330
DevelopersIO BASECAMP(デベキャン)の今までとこれからについて
fukazawashun
0
360k
DevelopersIO BASECAMPで扱うサービスのアップデート紹介
fukazawashun
0
920
書く技術
fukazawashun
0
2.3k
GitHub Actionsを使ってAWS App Runnerにデプロイできるようになりました
fukazawashun
0
1.6k
TerraformとCloudFormationどちらを採用すべき?
fukazawashun
0
19k
Other Decks in Technology
See All in Technology
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
170
生成AI時代のPythonセキュリティとガバナンス
abenben
0
120
Wasmの気になる最新情報
askua
0
180
「改善」ってこれでいいんだっけ?
ukigmo_hiro
0
410
AI時代、“平均値”ではいられない
uhyo
8
2.4k
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
340
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
310
HonoとJSXを使って管理画面をサクッと型安全に作ろう
diggymo
0
170
Dylib Hijacking on macOS: Dead or Alive?
patrickwardle
0
460
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
1
300
QA業務を変える(!?)AIを併用した不具合分析の実践
ma2ri
0
120
AIとともに歩んでいくデザイナーの役割の変化
lycorptech_jp
PRO
0
840
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Documentation Writing (for coders)
carmenintech
75
5.1k
Rails Girls Zürich Keynote
gr2m
95
14k
GraphQLとの向き合い方2022年版
quramy
49
14k
Embracing the Ebb and Flow
colly
88
4.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Faster Mobile Websites
deanohume
310
31k
GitHub's CSS Performance
jonrohan
1032
470k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Transcript
2025/04/10 クラスメソッド株式会社 ⼈材ソリューション部 深澤俊 試験は暗記より理解 〜効果的な試験勉強とその後への活かし⽅〜
⾃⼰紹介 2 • 2015年 webアプリケーション開発 • 2017年 SRE • 2019年 ソリューションアーキテクト • 2023年 プロダクトマネージャー
• 部署 ◦ ⼈材ソリューション部 • 名前 ◦ 深澤 俊(ふかざわ しゅん)
AWS認定AIプラクティショナーについて
AWS認定AIプラクティショナーについて 4 • Foundational(最も基礎的な知 識を求められるカテゴリ)に属 した認定資格 • AI/ML、⽣成 AI テクノロジー及
びAWSのサービスに関する基礎 的かつ総合的な知識を問われる 画像引⽤元: https://aws.amazon.com/jp/certification/
AIプラクティショナーはまだ数少ない AI関係の知識を網羅的に学習できる試験です。 AWS認定AIプラクティショナーについて 5
AWS認定AIプラクティショナー対策について
AWS認定AIプラクティショナー対策について 7 • 試験の順番としてはクラウドプラクティショナーを先に取得推奨 ◦ 試験ガイドにAWSの経験を持つ⽅が対象と明記されているため ◦ 余裕がない場合は試験ガイドの推奨されるAWSの知識に書かれた内容を予習推奨 引⽤元:https://d1.awsstatic.com/ja_JP/training-and-certification/docs-ai-practitioner/AWS-Certified-AI-Practitioner_Exam-Guide.pdf
AWS認定AIプラクティショナー対策について 8 • AWSの知識よりは機械学習やAIの知識の⽅が多めに問われる印象 • Foundationalは基礎であるが故に幅広く出題される • 全てを暗記するよりは理解しながら学習することを推奨 ◦ 量が多く、全てを暗記するのはあまり現実的ではない
◦ 試験⽬的の1つであるスキル及び知識の獲得につながらない
理解しながら学習の例 9 • 試験範囲にAIモデルの評価指標の話がある ◦ AIが⽣成したテキスト‧コード‧画像などの品質や有⽤性を客観的に測定するための基 準の話 ◦ BERTScore、ROUGEなどがある •
理解することで最近多数出ている⽣成AIモデルの得意不得意を⾒極めるこ とができるようになる ◦ Claudeはソフトウェア問題解決が得意等 引⽤元:https://www.anthropic.com/news/claude-3-7-sonnet
理解しながら学習の例 10 • 試験範囲に⽣成AIのチューニング⼿法がある ◦ 推論パラメータ ◦ プロンプトエンジニアリング ◦ RAG
◦ ファインチューニング • 理解することで⽣成AIのパフォーマンスを引き出すことができるようにな る ◦ ⽣成AIがうまく回答してくれない。。に向き合うための基礎知識
では、どう学習するか AWS認定AIプラクティショナー対策について 11
AWS認定AIプラクティショナー対策について 12 • まずは試験ガイド ◦ どの辺りを重点的に勉強するかなど合格戦略を⽴てることができる • 体系的に試験範囲の学習を⾏う ◦ Skill
Builderの試験対策はおすすめ • 少しでも分からないと思ったところは深掘りする ◦ 技術系のものは⼿を動かした⽅がいいです ◦ 理解が難しいものは⽣成AIと壁打ちしつつ、いい資料を検索しましょう ▪ ChatGPT ▪ Perplexity(geminiの要約など
AWS認定AIプラクティショナー対策について 13 • 本書籍では理解しながらの学習を⽀援するため 丁寧な説明を盛り込んでいます。 • 試験対策学習のロードマップにもこだわり、初 学者の⽅でも学習しやすいトピックの順番にこ だわりました。 •
AWS未経験でも合格できるよう、AWSの基礎知 識の解説も盛り込みました。 • ⼿を動かす学習のためにハンズオンも付録とし て付いてきます。
AWS認定AIプラクティショナー試験後について
AWS認定AIプラクティショナー試験後について 15 • 復習しましょう ◦ 試験の⽬的にはスキル定着も含まれるはず ◦ 合否に関わらず、試験をやった経験を⽣かすようにしましょう • 業務での活⽤を考えましょう
◦ ビジネスパーソン ▪ 例)プロンプトエンジニアリングを駆使した業務の改善 ◦ エンジニア ▪ 例)プロダクトへのML/AI系サービス活⽤ • 次の認定資格を⽬指しましょう ◦ Machine Learning Engineer - Associate ◦ Machine Learning - Specialty
さらに先の課題について 16 • 組織への定着 • ⽣成AIを活⽤した具体的な業務の改善 • メンバーの育成(⽣成AI専⾨組織設⽴ • ⾼い専⾨性を持ったメンバーのjoin
など。。
さらに先の課題について 17 • 組織への定着 • ⽣成AIを活⽤した具体的な業務の改善 • メンバーの育成(⽣成AI専⾨組織設⽴ • ⾼い専⾨性を持ったメンバーのjoin
など。。 解決の難しい課題は⼀緒に考えましょう!
None