Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Balancing Relevance and Discovery to Inspi...
Search
Takashi Nishibayashi
October 17, 2020
Research
0
740
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
RecSys2020論文読み会の発表資料です
https://connpass.com/event/189192/
Takashi Nishibayashi
October 17, 2020
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
280
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
140
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
160
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
890
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
250
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
640
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
2
300
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
1
130
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
1
380
Other Decks in Research
See All in Research
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
9.8k
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
230
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
120
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
4.8k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
390
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
850
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
400
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
150
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
230
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
770
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
8
1.5k
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Designing for Performance
lara
610
69k
Faster Mobile Websites
deanohume
310
31k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Music & Morning Musume
bryan
46
6.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The Pragmatic Product Professional
lauravandoore
36
7k
Transcript
จհ #BMBODJOH3FMFWBODFBOE%JTDPWFSZ UP*OTQJSF$VTUPNFSTJOUIF*,&""QQ 3FD4ZTจಡΈձ ྛ !IBHJOP
"CPVUNF ✦ 4PGUXBSF&OHJOFFSBU70:"(&(3061 ✦ ࠂ৴ϓϩμΫτͷ։ൃΛ͍ͯ͠·͢ ✦ 3FD4ZTॳࢀՃ ✦ 5XJUUFS!IBHJOP
հ͢Δจ
༰ ✦ *,&"ΞϓϦͷ*OTQJSBUJPOBM'FFEʹ͓͚ΔϦίϝϯυํࡦʹ#BOEJU 'FFECBDLϩάͬͨϙϦγʔֶशΞϓϩʔνΛద༻ͨ͠ ✦ Ϣʔβʔ͕ΠϯεϐϨʔγϣϯΛಘΒΕΔ༷ʹDPVOUFSGBDUVBMSJTL NJOJNJ[BUJPOQSJODJQMF<>ʹج͍ͮͯํࡦΛֶशͨ͠ ✦ "#ςετͷ݁ՌɺڠௐϑΟϧλϦϯάʹΑΔํࡦͱൺֱͯ͠ΫϦοΫ ্͕ঢͨ͠
✦ ϖʔύʔʹଛࣦ࣮ؔݧ݁Ռ΄ͱΜͲॻ͍ͯͳ͔ͬͨͷͰɺ͜ͷൃ දޱ಄ൃද༰Λͬͯิ͍ͯ͠·͢
*OTQJSBUJPOBM'FFE ✦ Ϣʔβʔ༷ʑͳ෦ͷλΠϓʹ͋ΘͤͯՈ۩͕ ஔ͞ΕͨΠϝʔδ͕ӾཡͰ͖Δ ✦ ͜ͷϑΟʔυϢʔβʔʹؔ࿈͕͋ΓΠϯεϐ ϨʔγϣϯΛ༩͑Δͷʹ͍ͨ͠ɻڻ͖ͷཁૉ͕ ٻΊΒΕΔɻ 3FMFWBODFBOE%JTDPWFSZUP*OTQJSF
✦ ؔ࿈ੑʹಛԽͨ͠Ϧίϝϯυػೳطʹ͋Δ
$POUFYUVBMCBOEJUTXJUICBUDIMFBSOJOHGSPN MPHHFECBOEJUGFFECBDL ✦ Ͳͷը૾Λදࣔ͢Δ͔ ✦ $POUFYUVBM#BOEJUTͰܾΊΔ ✦ $POUFYUVBM#BOEJUTͷߦಈબϙϦγʔͷֶश ✦ όονͰΔ
㱠ΦϯϥΠϯֶश ✦ #BOEJU'FFECBDLϩάΛͬͯ܇࿅ ✦ CBTFEPOUIFQSJODJQMFPGDPVOUFSGBDUVBMSJTLNJOJNJ[BUJPO<> ✦ $PVOUFSGBDUVBM-FBSOJOH
✦ ߦಈ ✦ ը૾Λબͯ͠දࣔ͢Δࣄ ✦ ใु ✦ දࣔͨ͠ը૾͕ΫϦοΫ͞ΕΔ͔Ͳ͏͔㱨\ ^ ✦
ίϯςΩετ ✦ ΞϓϦ্ͷϢʔβʔࣗͷաڈͷ;Δ·͍ *OTQJSBUJPOBM'FFEͷ#BOEJUઃఆ
$POUFYUVBMCBOEJUT ܁Γฦ͠ҙࢥܾఆʹ͓͍ͯྦྷੵใुͷ࠷େԽΛૂ͏ํࡦͷͳ͔Ͱ ϥϯυຖͷίϯςΩετใΛར༻ͯ͠ٻΊͨείΞʹैͬͯߦಈΛબ͢ Δͷɻ؍ଌͨ͠ใुΛͬͯείΞϦϯάϞσϧΛߋ৽͍ͯ͘͠ɻ είΞϦϯάϞσϧʹઢܗϞσϧΛ࠾༻ͨ͠-JO6$#<>ͳͲɺ༷ʑͳํࡦ͕ఏҊ͞Ε͍ͯΔ
ࢀߟ-JO6$#<> ϥϯυUʹ͓͚ΔߦಈBͷ είΞใुͷظ ඪ४ภࠩºЋ είΞ͕࠷େͷߦಈΛ࣮ߦ ύϥϝʔλߋ৽
#BUDIMFBSOJOHGSPNMPHHFECBOEJUGFFECBDL ✦ CBOEJUGFFECBDLϩάΛֶͬͨश ✦ աڈͷߦಈબϙϦγʔʹΑΔόΠΞεͷิਖ਼͕ඞཁ ✦ ਪનγεςϜͷϩάجຊతʹCBOEJUGFFECBDL ✦ ΦϯϥΠϯֶशͰͳ͍ཧ༝ಛʹઆ໌͕ແ͔͕ͬͨ ✦
ϦΫΤετྔ͕ଟ͍αʔϏεͰόϯσΟοτΞϧΰϦζϜΛ͏߹ จͷखଓ͖௨ΓʹύϥϝʔλΛஞ࣍ߋ৽͢Δέʔεগͳ͍ͱࢥ͏ ✦ ΦϯϥΠϯֶशӡ༻͕େม
ิ#BOEJU'FFECBDLϩάΛֶͬͨश ✦ #BOEJU'FFECBDLϩάΛར༻ͨ͠৽͍͠ߦಈબϙϦγʔͷੑೳධՁΛߦͳ͏ ख๏ଘࡏ͢Δ ˠ0⒎1PMJDZ&WBMVBUJPO *OWFSTF1SPQFOTJUZ4DPSJOH %PVCMZ3PCVTU ʜ ✦
ੑೳධՁ͕࠷େʹͳΔ༷ʹߦಈબϙϦγʔΛֶश͢Εྑ͍ ✦ ߦಈΛBɺίϯςΩετΛYɺใुΛSͱͯ͠*14ͰධՁ͢Δ߹ КOFXͷ*14$PVOUFSGBDUVBM&TUJNBUPS
ߦಈબϙϦγʔͷֶश ϙϦγʔК͕ίϯςΩετYʹରͯ͠ߦಈZΛબͿ֬ είΞ ΛК ZcY ใुΛЎͱ͓͘ɻաڈͷϙϦγʔКͷείΞͱ؍ଌͨ͠ใुΛར༻ͯ͠ɺ৽ͨͳ ϙϦγʔКВΛֶश͢Δ ޱ಄ൃදεϥΠυ͔Βഈआ ͜ͷ··Ͱࢄͷ͕ग़ΔͷͰɺ<>Λࢀߟʹ͍͔ͭ͘ͷΛऔΓ͍Ε͍ͯΔͱͷઆ
໌͕͋ͬͨ
ଛࣦؔͷײతͳղऍ ใु͕ಘΒΕͨߦಈͰಛʹաڈͷϙϦγʔͷείΞ͕͍ߦಈͷείΞ্͕ ͕Εϩε͕Լ͕Δɻͭ·Γ͋·Γબ͠ͳ͔͕ͬͨΫϦοΫ͕ಘΒΕͨߦಈΛଟ͘ બͿ༷ʹֶश͢Δɻ ޱ಄ൃදεϥΠυ͔Βഈआ
ଛࣦؔͲ͔͜Βདྷͨͷ͔ ޱ಄ൃදεϥΠυͷࣜ3FGFSFODFʹ͋Δ 4XBNJOBUIBOΒ$PVOUFSGBDUVBMSJTL NJOJNJ[BUJPO-FBSOJOHGSPNMPHHFECBOEJU GFFECBDLz *$.- <>ʹ͓͚ΔఏҊख๏ ͷಋग़ͷং൫ʹ͋Δ*14ϕʔεͷࣜɻ ͳͷͰ࣮ࡍʹ͍ͬͯΔ
ͷ<>ͷఏҊख๏ͷࣜ ͩͱࢥΘΕΔ
$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOHGSPNMPHHFE CBOEJUGFFECBDL *$.- <> ✦ *14ͷࢄ༝དྷͷΤϥʔΛόϯυ͢ΔVOCJBTFEFTUJNBUPSͰ͋Δ $3.$PVOUFSGBDUVBM3JTL.JOJNJ[BUJPOΛఏҊɺࢄΛਖ਼ଇԽ߲ʹ ✦ $3.Λֶश͢Δ܇࿅ΞϧΰϦζϜ10&.ͷఏҊ
ิ%PVCMZSPCVTUNFUIPEGPSDPVOUFSGBDUVBM MFBSOJOH Yuan, Bowen, et al. "Improving ad click prediction
by considering non-displayed events." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.
ΦϯϥΠϯධՁ ✦ ධՁࢦඪ$53 ✦ ͷ্͕֬ೝͰ͖ͨ ✦ ڠௐϑΟϧλϦϯάϕʔεͷख๏ͱൺֱ ✦ ڠௐϑΟϧλϦϯά3FMFWBODFॏࢹ ✦
ॳͷతୡͰ͖ͨ ✦ આ໌ແ͔͕ͬͨʮࠓ·Ͱʹਪન͠ͳ͔ͬͨΞΠςϜΛଟ͘ਪન͢ΔࣄͰΫ ϦοΫ͕૿͑ͨʯˠ*OTQJSBUJPOΛ༩͑Δࣄ͕Ͱ͖ͨͱղऍͰ͖ͦ͏ ✦ ΫϦοΫ͕ݮ͍ͬͯͳ͍ˠϏδωεࢦඪΛᆝଛ͍ͯ͠ͳ͍
ͷ࣭ٙԠͷൈਮ 2%PVCMZ3PCVTUͰͳ͘*14ʹͨ͠ͷԿނ ಛʹΦϑϥΠϯධՁͰࢄ͕ʹͳΒͳ͔͔ͬͨ "%PVCMZ3PCVTUߟ͑ͳ͔ͬͨɻ͔͠͠ࢄΛ͑ΔͨΊʹεί ΞͷΫϦοϐϯάΛߦͳͬͨ 2"#ςετΛि͚ؒͩΒͤͨ͜ͱͰɺϢʔβʔ͕׳Ε͠Μͩ " ͱҧͬ
͍ͯͨͨΊ # ͷ$53͕ߴ͘ͳͬͨՄೳੑ͋Δ͔ "ͦͷޙҰ؏ͯ͠ߴ͍$53Λ͍ࣔͯ͠Δ͔ΒɺͦΕແ͍ͱߟ͍͑ͯΔ 2୳ࡧΛߦͳ͏ࣄͰΫϦοΫͷݮগΈΒΕͳ͔͔ͬͨ "શ͘ٯͰ૿Ճͨ͠
ࢀߟจݙ <>5ÓUI #BMÂ[T 4BOEIZB4BDIJEBOBOEBO BOE&NJM4+SHFOTFO#BMBODJOH3FMFWBODFBOE %JTDPWFSZUP*OTQJSF$VTUPNFSTJOUIF*,&""QQ'PVSUFFOUI"$.$POGFSFODFPO 3FDPNNFOEFS4ZTUFNT <>-J -JIPOH FUBM"DPOUFYUVBMCBOEJUBQQSPBDIUPQFSTPOBMJ[FEOFXTBSUJDMF
SFDPNNFOEBUJPO1SPDFFEJOHTPGUIFUIJOUFSOBUJPOBMDPOGFSFODFPO8PSMEXJEFXFC <>4XBNJOBUIBO "EJUI BOE5IPSTUFO+PBDIJNT$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOH GSPNMPHHFECBOEJUGFFECBDL*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH <>:VBO #PXFO FUBM*NQSPWJOHBEDMJDLQSFEJDUJPOCZDPOTJEFSJOHOPOEJTQMBZFE FWFOUT1SPDFFEJOHTPGUIFUI"$.*OUFSOBUJPOBM$POGFSFODFPO*OGPSNBUJPOBOE ,OPXMFEHF.BOBHFNFOU