Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Power BI Premiumでデータ準備!
Search
Akihiro Suto
May 03, 2022
Technology
1
1.1k
Power BI Premiumでデータ準備!
Power BI 勉強会GW合宿 2022第壱夜~夜のデータ準備~
https://powerbi.connpass.com/event/246419/
こちらで発表した内容です。
Akihiro Suto
May 03, 2022
Tweet
Share
More Decks by Akihiro Suto
See All by Akihiro Suto
JPPC2023_BI08_セマンティックモデルを覗き見る(公開用)
hanaseleb
0
5.2k
プッシュデータセットを試してみよう
hanaseleb
0
680
レポートをつくる、その先の運用を考える🤔 Power BI Report Ops
hanaseleb
0
5.4k
Power BI データフローを考える
hanaseleb
1
1.8k
DAXクエリをDAX Studioでつくって、Power Automateで発射する💪
hanaseleb
1
2.9k
BIのPowerをAutomateする
hanaseleb
0
510
Power BI のうらがわ
hanaseleb
2
1k
ゼロからはじめたPower BI
hanaseleb
1
1.4k
Power Automateドリブンのチームマネジメント
hanaseleb
0
810
Other Decks in Technology
See All in Technology
安いGPUレンタルサービスについて
aratako
2
2.6k
Oracle Cloud Infrastructure:2025年11月度サービス・アップデート
oracle4engineer
PRO
2
160
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
12
4.3k
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
370
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
10
6.4k
.NET 10 のパフォーマンス改善
nenonaninu
2
4.9k
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
160
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
120
グレートファイアウォールを自宅に建てよう
ctes091x
0
130
21st ACRi Webinar - Univ of Tokyo Presentation Slide (Shinya Takamaeda)
nao_sumikawa
0
110
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
270
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
480
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
57k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Making Projects Easy
brettharned
120
6.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
710
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.1k
Transcript
Power BI 勉強会 GW合宿 2022 第壱夜 夜のデータ準備
須藤 明洋 すとう あきひろ 秋田県 出身 集英社 勤務 Power BI
2021.04~ Python 2021.09~ Rugby 1991.04~ Kendama 2020.04~
Power BI Premiumでデータ準備
• Power BI Premiumの一部機能をご紹介 ◦ 💎配置パイプライン ◦ 💎データフロー ◦ 💎高度なAI
◦ 💎機械学習 Power BI Premiumでデータ準備
配置パイプライン
• BI 作成者は組織のコンテンツのライフサイクルを管理 ◦ 開発環境→テスト環境→プロダクション環境 ◦ パラメーターの管理 ◦ データベースの変更 配置パイプライン
None
None
None
None
None
None
None
None
None
None
None
None
None
None
• 開発環境 100行 ◦ インポートしたときに作業しやすい • テスト環境 1,000,000行 ◦ 前年比など確認
• 運用環境 1,000,000,000行 → 全データ 配置パイプライン
• 開発環境 100行 ◦ インポートしたときに作業しやすい • テスト環境 1,000,000行 ◦ 前年比など確認
• 運用環境 1,000,000,000行 → 全データ 配置パイプライン Power BI Desktop Power BI Service
Dataflow
• Power BI 内の多くのデータセットおよびレポートで共有できる再利用 可能な変換ロジックを作成できる。 ◦ Power Query Online •
独自の Azure Data Lake Storage Gen 2 内にデータが公開される。 Dataflow
None
• データフローを使用することで、データソースに何度もアクセスされる ことを防ぐことができる。 → Azure Data Lake Storage Gen2 にアクセス
Dataflow
None
None
None
• データフローを使用することで、データソースに何度もアクセスされる ことを防ぐことができる。 → Azure Data Lake Storage Gen2 にアクセス
• アクセス負荷軽減 • セキュリティ • 権限設計 Dataflow
Power BI Premium の Dataflow
• 💎処理の高速化 • 💎増分更新 • 💎リンクテーブル • 💎計算テーブル Power BI
Premium の Dataflow
💎処理の高速化
• Power BI Pro ◦ ベスト エフォート • Power BI
Premium ◦ 専用容量が割り当てられる →処理が早い 💎処理の高速化
💎処理の高速化 • Pro環境 • Premium環境 データ読込速度比較
💎処理の高速化 • Pro環境:更新時間の制限 ◦ 個々のエンティティのレベルで 2 時間 ◦ データフロー全体のレベルで 3
時間
None
💎処理の高速化 • Premium環境:更新時間の制限 ◦ データフロー全体のレベルで 24 時間
None
• 例が良くない ◦ すみません • 体感時間 ◦ 半分くらい 💎処理の高速化
💎増分更新
• Datasetの増分更新 ◦ Proライセンスでも可能 • Dataflowの増分更新 ◦ Premiumライセンスが必要 💎増分更新
• 更新が高速化される • 更新の信頼性が高くなる • リソースの使用が減る 💎増分更新
None
None
None
None
💎リンクテーブル&💎計算テーブル
• 💎リンクテーブル ◦ 既存のデータフローを参照する。 ◦ 複数のデータフロー内で再利用できるテーブルを作成する。 💎リンクテーブル&💎計算テーブル
None
None
None
• 💎計算テーブル ◦ リンク テーブルを参照し、書き込み専用の方法でそのテーブルに 対して操作を実行する。 ◦ その結果として新しいテーブルが作成される。 💎リンクテーブル&💎計算テーブル
None
None
データフローを使用してデ ータ ウェアハウスを作成す るためのベスト プラクティ ス - Power Query |
Microsoft Docs
データフローを使用してデータ ウェアハウスを作成する ためのベスト プラクティス - Power Query | Microsoft Docs
シナリオに沿って紹介 ◦ 夏のフェア 『ナツコミ』 ◦ Twitterの反応を可視化したい 💎リンクテーブル&💎計算テーブル
None
None
None
データ前処理
高度なAI
• テキストアナリティクス • 画像へのタグ付け 高度なAI
• テキストアナリティクス 自然言語処理 ◦ 言語の特定 ◦ キーフレーズ抽出 ◦ 感情スコア 高度なAI
None
None
None
None
None
None
データ前処理
データ前処理
• 更新のオーケストラレーション ◦ 同じワークスペースに存在する場合 ◦ 上流のデータが更新されると下流のリンクテーブル、計算テーブル は順次更新される。 💎リンクテーブル&💎計算テーブル
None
None
None
None
None
None
None
None
機械学習
• 経験からの学習により自動で改善するコンピューターアルゴリズム 機械学習 機械学習 - Wikipedia
• Power BI のAutoML ◦ 二項分類 ◦ 多項分類 ◦ 回帰
機械学習 データフローと共に Machine Learning と Cognitive Services を使用する - Power BI | Microsoft Docs
DEMO Diamond データセット カラット カラーなどから 価格を予測する 機械学習 pycaret/pycaret: An open-source,
low-code machine learning library in Python (github.com)
None
ほかにも、 • データフローへのダイレクトクエリ • ページ分割されたレポート • 最大48回更新 などなど Power BI
Premium 便利! Power BI Premium の機能。 - Power BI | Microsoft Docs
ほかにも、 • データフローへのダイレクトクエリ • ページ分割されたレポート • 最大48回更新 などなど Power BI
Premium 便利! Power BI Premium の機能。 - Power BI | Microsoft Docs もう戻れない
None