Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSDを用いた食材リアルタイム検知 &レシピレコメンドシステム
Search
hayataka
April 07, 2024
Science
0
140
SSDを用いた食材リアルタイム検知 &レシピレコメンドシステム
東大・松尾研主宰「Deep Learning 基礎講座2018」での最終課題発表ポスター
https://deeplearning.jp/lectures/dlb2018/
hayataka
April 07, 2024
Tweet
Share
More Decks by hayataka
See All by hayataka
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
21
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
190
どうすれば私たちは、R&D活動の計量・評価を 健全に活用できるだろうか?
hayataka88
0
110
IKIGAI BOX やさしさでつながる、スキル、お仕事マッチング FOR 介護施設入居者
hayataka88
0
95
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
1.4k
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
260
東大・松尾研主催 LLM Summer 2023 コンペ解法 (11位 – 20位枠での優秀賞)
hayataka88
0
590
生成AIと一緒につくる知財図鑑Podcast
hayataka88
0
340
ChatGPTとNoteableによる科学技術情報分析
hayataka88
3
3.8k
Other Decks in Science
See All in Science
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
620
データベース02: データベースの概念
trycycle
PRO
2
900
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
130
SciPyDataJapan 2025
schwalbe10
0
260
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
130
Hakonwa-Quaternion
hiranabe
1
130
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
データベース03: 関係データモデル
trycycle
PRO
1
260
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.2k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
990
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
660
Featured
See All Featured
Facilitating Awesome Meetings
lara
55
6.5k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
BBQ
matthewcrist
89
9.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
For a Future-Friendly Web
brad_frost
180
9.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Site-Speed That Sticks
csswizardry
10
810
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Music & Morning Musume
bryan
46
6.8k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Transcript
SSDによる リアルタイム検知 1. 目的 食材写真からレシピを推薦するサービスは数多くあるが、画像をキレイに撮影 するのは面倒。冷蔵庫の中身をそのまま動画スキャンできれば便利なのでは ないか。 1 レシピレコメンドアプリ例(ライオン) ref)
https://reed.lion.co.jp/search/ 動画撮影による食材検知&レシピ推薦 2. アプローチ 3. SSDモデル構築 食材をキレイに撮影する手間を省くため、①の冷蔵庫内動画からリアルタイムに検 知にするSSDモデル構築に注力した。なお、②は簡易的に実施した。 冷蔵庫の中身 動画撮影 レシピAPI※から 検知した食材を含む レシピをランダム取得 1 2 R-CNN Fast(er) R-CNN YOLO You Only Look Once SSD Single Shot MultiBox Detector Single Stage 直接各物体のクラス・位 置推定 高速 多オブジェクト可能 Aと同等の精度 Bより高速 多オブジェクト可能 Two Stage 物体候補推定 →候補毎に物体クラス・位 置推定 先駆け的な存在 遅い 特徴 タイプ アルゴリズム A B C ❖ ディープラーニング系物体検知アルゴリズム比較 ❖ フロー メンバー各人が自身の冷蔵庫の中身をスマホで動画撮影し、アノテーション ツールを使って、学習データを作成(計1030枚)。 1 2 3 4 データ準備 モデル学習 評価&考察 改善案 • labeling_for_object_detec tion:Processingを用い たツール。Githubで公 開。 • VoTT:マイクロソフト製。 動画から直接アノテー ション可能。出力データ に不要データが含まれ る等、一部使いにくい部 分がある。 アノテーションツール 学習データ内訳 Github(https://github.com/rykov8/ssd_keras) に公開されているssd_kerasを利 用してSSDモデルを学習。 • 学習・検証に利用していないテストデータにおいて、正解と推定結果で、bboxのIoU(重なり度合い)が 0.5以上であれば、ラベル比較をする。その他はBackgroundと認識されたと仮定。下記の混合行列は、 各正解ラベルがどのように推定されたか割合を示す。 • 課題①:少し似ているものはデータが多いものに引っ張られる傾向(Apple→Tomato、Enoki→しめじ、 Greenpepper→Aspara等) • 課題:②Cabbage→Shimeji、Spinach→Cucumberと包装等によって誤認識がされる可能性 • 課題:③そもそもBackgroundと認識されている場合が多く、領域推定に課題 • 食材 件数 Tomato 593 Carrot 559 Pumpkin 232 Spinach 188 Shimeji 165 Asparagus 142 Apple 135 Egg 122 Turnip 114 Cucumber 84 Broccoli 80 食材 件数 Leek 9 Pork 6 Chicken 5 Firefly_Squid 5 Squid 5 Beaf 4 Ume 4 食材 件数 Mushroom 72 Celery 71 Onion 55 Beansprouls 48 Enoki 47 Greenpepper 43 Daikon 39 Paprika 28 Cabbage 23 Milk 15 Orange 10 学習時 • アーキテクチャ: SSD300 • 損失関数: 位置特定誤差 (Smooth L1)と 確信度誤差 (Softmax)の重み付き和 • 最適化: Adam • バッチサイズ: 4 Configuration 損失推移 ※ EDAMAN Recipe Search API https://www.edamam.com/ データ加工 モデル工夫 新データ& モデル 観点 A-1. 学習データのバイアス低減 A-2. 高周波ノイズフィルタ(包装、ラップ等)【課題①】 A-3. 包装有無の両学習データの準備【課題②】 A-4. カット済み食材の学習(GANによる画像生成等) B-1. 他DL物体検知アルゴリズム(YOLO等) B-2. ハイパーパラメータ最適化 C-1. パッケージ文字認識による食材検知 C-2. 3次元形状の認識【課題③】 C-3. 食材の個数・量推定 C-4. 複数検知モデルのアンサンブル 改善案 A B C 評価&考察を踏まえつつ、下記のような改善案が考えられる。 SSDを用いた食材リアルタイム検知 &レシピレコメンドシステム チーム7 Deep Learning Day 2019.3.30 ※ 黄:正解、赤:誤認識割合No.1、青:誤認識割合No.2 検証時 正解\推定 Backgr ound Aspara gus Apple Broccol i Carrot Cabbag e Cucmb er Enoki Mushro om Onion Spinach Shimeji Tomato Apple 32 0 8 0 0 0 0 0 0 0 0 0 60 Carrot 33 0 0 0 67 0 0 0 0 0 0 0 0 Cabbage 35 12 0 6 0 12 0 6 0 0 0 29 0 Enoki 50 0 0 0 0 17 0 0 17 0 0 17 0 Greenpepper 87 13 0 0 0 0 0 0 0 0 0 0 0 Onion 56 0 0 0 0 0 0 11 0 28 0 6 0 Spinach 32 5 0 0 0 0 39 0 0 0 24 0 0 Tomato 41 0 0 0 0 0 0 0 0 0 0 0 59