Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryで行う、 機械学習のための データ前処理
Search
hiroaki
December 18, 2019
Technology
4
2.6k
BigQueryで行う、 機械学習のための データ前処理
hiroaki
December 18, 2019
Tweet
Share
More Decks by hiroaki
See All by hiroaki
機械学習を無理なく広告システムに導入する
hiroaki8388
2
6.2k
Pythonで、処理をより効率化するためのTips集
hiroaki8388
15
12k
Other Decks in Technology
See All in Technology
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
200
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
4.5k
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
180
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
360
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
370
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
530
What happened to RubyGems and what can we learn?
mikemcquaid
0
210
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
630
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
データの整合性を保ちたいだけなんだ
shoheimitani
3
490
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
490
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
3
1.1k
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
54
Navigating Weather and Climate Data
rabernat
0
97
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The untapped power of vector embeddings
frankvandijk
1
1.6k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Visualization
eitanlees
150
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
240
Optimising Largest Contentful Paint
csswizardry
37
3.6k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Transcript
BigQueryで行う、 機械学習のための データ前処理 GCPUG Tokyo December 2019 長谷川大耀 (Fringe81)
自己紹介 長谷川大耀(@Hase8388) で 機械学習の開発やってます
BigQueryで機械学習が行えると何が嬉しい? • 大量のデータから、安く簡単にデータセットを構築できる • SQLで処理ができるので、誰でも簡単に実行可能 • BQMLで構築したモデルにシームレスにデータを流し込める 今回話すこと さらによりよいモデルを作るために、 BQ(ML)での前処理を行うための方法の紹介
話さないこと アルゴリズムの話など、モデル自体の仕組みの話
機械学習では、前処理がなぜ重要? 解くべきタスクの本質を、 より明らかな形として表現するデータに加工することで、 モデルの性能を更に引き出すことができる 1. 概観の把握 2. 特徴量の作成、変換 3. モデルにデータセットを流し込む
それぞれのフェイズで 代表的な関数+自分が好きな関数を紹介します
1. データの概観するための関数 • 分布の概観把握なども簡単にできる • 基本的な統計集約関数
より複雑な分析や可視化はJupyterで Jupyter上でBQの出力結果を DataFrameとして格納し、pandas/matplotlibなどで分析 google-cloud-bigqueryでJupyter上から接続 https://googleapis.dev/python/bigquery/latest/magics.html#module-google.cloud.bigquery.magics 誤ったクエリでの重課金を 防ぐために、課金される容量に 上限もつけれる
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.QUANTITLE_BUCKTIZE 連続値から、多項式特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.FEATURE_CROSS 交差特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.NGRAMS 文章を指定した単位で分かち書き
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • IF 二値化
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.QUANTITLE_BUCKTIZE 連続値を指定した数の binに振り分ける
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.MIN_MAX_SCALER • ML.STANDARD_SCALER 正規化、標準化
ex. 地理情報をHash化する: ST_GEOHASH 地理情報をカテゴリとして扱うために Hash化するなら、ST_STGEOHASHが便利 ! Hash値を長くすればするほど、 より詳細な位置情報を表現できる
3. 前処理したデータをモデルに流し込む 課題: BQMLで作成したモデルにデータセットを流し込む その時、学習、予測、評価で、イチイチ同じ前処理を行うのはシンドい 学習 データ 前処理 評価 データ
前処理 予測 データ 前処理 モデル モデルを使う人が前処理のロジックを 知っている必要がある。つらい 学習時 予測時 重複!
3. 前処理とモデルを一体化: TRANSFORM句 前処理を集約-隠蔽でき、 より使いやすいモデルが構築できる 学習 データ 評価 データ 前処理
予測 データ モデル 解決: 前処理モデルの中に組み込み、 予測、評価ではただ元のデータを流し込むだけで良い 学習時 予測時
最後に BigQuery(ML)を使うと、SQLだけで簡単に前処理とモデル構築が行える 新しい関数とアルゴリズムがどんどん追加されているので、今後がより楽しみ
エンジニアを積極採用中です ! Front-end Back-end Scala / Go Python JS /
Elm React / RN