Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BigQueryで行う、 機械学習のための データ前処理
Search
hiroaki
December 18, 2019
Technology
4
2.5k
BigQueryで行う、 機械学習のための データ前処理
hiroaki
December 18, 2019
Tweet
Share
More Decks by hiroaki
See All by hiroaki
機械学習を無理なく広告システムに導入する
hiroaki8388
2
5.9k
Pythonで、処理をより効率化するためのTips集
hiroaki8388
15
11k
Other Decks in Technology
See All in Technology
Information Architecture Recommoning: How Standardization Enables Differentiation
angioia
0
160
NW運用の工夫と発明
recuraki
2
870
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
2
7.3k
libsyncrpcってなに?
uhyo
0
240
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
2k
AI とペアプロしてわかった 3 つのヒューマンエラー
takahiroikegawa
0
310
実践Kafka Streams 〜イベント駆動型アーキテクチャを添えて〜
joker1007
3
820
Drawing with LLMs
rist
0
200
ai bot got sick (abc 2025s version)
kojira
0
120
JavaのMCPサーバーで体験するAIエージェントの世界
tatsuya1bm
1
210
Spring for GraphQLって実際どうなの?〜小規模スタートアップの事例紹介〜
kogayushi
0
160
Data Observability:企業資料管理技術的未來顯學
cheng_wei_chen
0
320
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
6
640
Statistics for Hackers
jakevdp
799
220k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
RailsConf 2023
tenderlove
30
1.1k
YesSQL, Process and Tooling at Scale
rocio
172
14k
A better future with KSS
kneath
239
17k
How to Ace a Technical Interview
jacobian
276
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Transcript
BigQueryで行う、 機械学習のための データ前処理 GCPUG Tokyo December 2019 長谷川大耀 (Fringe81)
自己紹介 長谷川大耀(@Hase8388) で 機械学習の開発やってます
BigQueryで機械学習が行えると何が嬉しい? • 大量のデータから、安く簡単にデータセットを構築できる • SQLで処理ができるので、誰でも簡単に実行可能 • BQMLで構築したモデルにシームレスにデータを流し込める 今回話すこと さらによりよいモデルを作るために、 BQ(ML)での前処理を行うための方法の紹介
話さないこと アルゴリズムの話など、モデル自体の仕組みの話
機械学習では、前処理がなぜ重要? 解くべきタスクの本質を、 より明らかな形として表現するデータに加工することで、 モデルの性能を更に引き出すことができる 1. 概観の把握 2. 特徴量の作成、変換 3. モデルにデータセットを流し込む
それぞれのフェイズで 代表的な関数+自分が好きな関数を紹介します
1. データの概観するための関数 • 分布の概観把握なども簡単にできる • 基本的な統計集約関数
より複雑な分析や可視化はJupyterで Jupyter上でBQの出力結果を DataFrameとして格納し、pandas/matplotlibなどで分析 google-cloud-bigqueryでJupyter上から接続 https://googleapis.dev/python/bigquery/latest/magics.html#module-google.cloud.bigquery.magics 誤ったクエリでの重課金を 防ぐために、課金される容量に 上限もつけれる
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.QUANTITLE_BUCKTIZE 連続値から、多項式特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.FEATURE_CROSS 交差特徴量を作成
2. 特徴量を作成するための関数 様々な特徴量作成・変換のための 前処理用の関数が、最近続々追加 ! • ML.NGRAMS 文章を指定した単位で分かち書き
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • IF 二値化
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.QUANTITLE_BUCKTIZE 連続値を指定した数の binに振り分ける
3. 特徴量を変換するための関数 特徴量の変換も、 短いクエリで簡単に実行可能 ! • ML.MIN_MAX_SCALER • ML.STANDARD_SCALER 正規化、標準化
ex. 地理情報をHash化する: ST_GEOHASH 地理情報をカテゴリとして扱うために Hash化するなら、ST_STGEOHASHが便利 ! Hash値を長くすればするほど、 より詳細な位置情報を表現できる
3. 前処理したデータをモデルに流し込む 課題: BQMLで作成したモデルにデータセットを流し込む その時、学習、予測、評価で、イチイチ同じ前処理を行うのはシンドい 学習 データ 前処理 評価 データ
前処理 予測 データ 前処理 モデル モデルを使う人が前処理のロジックを 知っている必要がある。つらい 学習時 予測時 重複!
3. 前処理とモデルを一体化: TRANSFORM句 前処理を集約-隠蔽でき、 より使いやすいモデルが構築できる 学習 データ 評価 データ 前処理
予測 データ モデル 解決: 前処理モデルの中に組み込み、 予測、評価ではただ元のデータを流し込むだけで良い 学習時 予測時
最後に BigQuery(ML)を使うと、SQLだけで簡単に前処理とモデル構築が行える 新しい関数とアルゴリズムがどんどん追加されているので、今後がより楽しみ
エンジニアを積極採用中です ! Front-end Back-end Scala / Go Python JS /
Elm React / RN