Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
複数環境でマイクロサービスを共用するためのプロトコル非依存なコンテクスト伝播 / PiCoP ja
Search
Hiroya Onoe
July 05, 2023
Research
0
2.6k
複数環境でマイクロサービスを共用するためのプロトコル非依存なコンテクスト伝播 / PiCoP ja
Hiroya Onoe
July 05, 2023
Tweet
Share
More Decks by Hiroya Onoe
See All by Hiroya Onoe
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
400
net/httpからnet.Connを掘り起こす
hiroyaonoe
1
2.7k
PiCoP en
hiroyaonoe
0
2.8k
Other Decks in Research
See All in Research
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
2
150
Weekly AI Agents News! 1月号 アーカイブ
masatoto
1
160
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
410
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
5.8k
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
530
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
260
複数データセットを用いた動作認識
yuyay
0
110
Segment Any Change
satai
2
210
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
980
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
Weekly AI Agents News!
masatoto
30
53k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
How STYLIGHT went responsive
nonsquared
98
5.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Speed Design
sergeychernyshev
27
790
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Docker and Python
trallard
44
3.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Into the Great Unknown - MozCon
thekraken
35
1.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
Transcript
複数環境でマイクロサービスを共用するための プロトコル非依存なコンテクスト伝播 尾上 寛弥 小谷 大祐 岡部 寿男 京都大学 https://speakerdeck.com/hiroyaonoe/picop-ja 1
背景:本番環境を模倣した環境 継続的インテグレーション/継続的デリバリーにおいて テスト/ステージング/デバッグ/プレビュー環境が必要 →本番環境よりアクセスが少なくリソースが無駄になりやすい マイクロサービスアーキテクチャ 1つのアプリケーションが 複数のマイクロサービスで 構成される →サービス数が多い分 さらにリソースの無駄が大きい
2
背景:コンテクスト伝播を用いたマイクロサービス共用 本番環境から変更されたサービス・状態を持つサービス以外は共用可能 →複数環境で同じマイクロサービスを共用することでリソース削減 (Wantedly, Mercari, Lyft, Ambassador Labsがそれぞれ提案) 1. 環境を識別するコンテクストをリ
クエストに付与して伝播 2. プロキシがリクエストを 適切な環境に振り分け 3
背景:コンテクスト伝播を用いたマイクロサービス共用 HTTPヘッダやgRPCメタデータにコンテクスト付与 1. OpenTelemetryを用いてコンテクスト伝播 2. EnvoyやIstioを用いてリクエスト振り分け 課題 伝播・振り分けが 特定のプロトコルに依存 -
他プロトコルでは利用不可 - プロトコルごとに計装が必要 4
関連研究:コンテクスト伝播 分散システムのトレーシング コンテクストを実際のリクエストに付与して伝播することでトレース (Dapper, Pinpoint, X-Trace, Pip, Canopy) コンテクスト伝播の共通化 様々なトレーシング手法におけるコンテクスト伝播の仕組みを
共通化することでシステムへの計装を軽減する提案 (Tracing Plane, Canopy, Pivot Tracing, Pythia) →いずれも特定の通信プロトコルやプラットフォームに依存 5
提案手法:PiCoP アプリケーション層プロトコルに非依存で コンテクスト伝播・リクエスト振り分けをするフレームワーク プロトコル アプリケーション層プロトコルを解釈 せずコンテクストを伝播 プロキシ プロトコルを利用しリクエスト を適切な環境へ振り分け 6
提案手法:PiCoPプロトコル TCPペイロードの先頭にコンテクストを付与 →アプリケーション層プロトコルの種類に関係なく利用可能 PROXY Protocol V2のシグネチャを利用 →アプリケーション層プロトコルと競合しない PROXY Protocol リバースプロキシサーバーを介した際の送信元クライアント情報を
プロトコル非依存で伝播可能にする →本提案の目的と似ている 伝播すべき情報の内容・形式が異なることから そのままは利用せず、参考にしている 7
提案手法:PiCoPプロトコル OpenTelemetryが定めた規格に準拠 →アプリケーションへの計装が容易 →他の目的でのコンテクスト伝播に利用しやすい OpenTelemetry 分散トレーシングに関連する規格・ライブラリを整備している コンテクスト伝播の仕組みを標準化する規格・ライブラリを提供 PiCoPプロトコルを用いて 環境を識別するID(環境ID)を リクエストに付与して伝播
8
提案手法:PiCoP プロキシ 任意のアプリケーション層プロトコルのリクエストを 環境IDに基づいて適切な環境へと振り分け 環境IDと振り分け先の対応関係(経路情報)を事前に受け取る デフォルトの経路を 共用のサービスに設定 環境固有のサービスがあるなら 固有のサービスに設定 9
実装 プロキシコントローラー プロキシと経路情報をDBで管理 管理者から情報を受け取る 各プロキシに情報を送信 プロキシのスケールアウトに対応 →大規模なクラスタでの使用 10
評価・考察:プロキシの通信遅延 11 nginxサーバーに対してペイロード1kBのHTTPリクエストを送信 10秒間で合計10000リクエストの応答時間を計測 同時コネクション接続数を1~64まで変化させる HTTPヘッダ or PiCoPプロトコルに”Env-Id:Main”のコンテクストを付与 4つの条件 PiCoPプロキシがある
vs. ない PiCoPプロキシ vs. Istioプロキシ
PiCoPプロキシがない場合との比較 (base vs. base+picop) 評価・考察:プロキシの通信遅延 12 3.2ms~12.3ms 遅い 6.7ms~13.3ms 遅い
Istioプロキシとの比較 (base+gw+istio vs. base+gw+picop) 既存手法で広く利用されるIstioとほぼ同等 →PiCoPプロキシによる遅延は実用的な範囲内 評価・考察:プロキシの通信遅延 13 ほぼ同等 0.3~2.7ms遅い
nginxサーバーに継続的にHTTPリクエストを送信して負荷をかける 全てのコンテナのCPU使用率が80%以下になるようにスケールアウト プロキシとnginxサーバーの合計コンテナ数を比較 各コンテナのリソース制限量は vCPU数0.1、メモリ128MiB 環境数は1~100で変化させる 環境数と同じ数のクライアント からリクエスト送信 全環境合計の秒間リクエスト数 100と1000で計測
14 評価・考察:共用によるリソース削減
一定以上の環境数だと共用した場合の方が削減 環境数が大きいほど削減量も大きい 15 評価・考察:共用によるリソース削減
評価・考察:プロトコル非依存の程度・制約 サービス間伝播 オプションデータを付与できないものを含む任意のアプリケーション層プロトコ ルで、共通の仕組みを用いたコンテクスト伝播が可能 コネクションの再利用に制約あり(例:HTTPの持続的接続) TCPコネクションを毎回確立するオーバーヘッド トランスポート層プロトコルごとにプロキシを実装する必要あり TCP以外にもUDPやQUICなどで利用可能 16 オプションデータを付与できないプロトコル
オプションデータを付与できるプロトコル MySQL, PostgreSQL, Memcached, Redis, MongoDB Wire Protocol, MQTT, Kafka Wire Protocol, TDS(Microsoft SQL Server) HTTP, gRPC, AMQP, Cassandra Native Protocol
サービス内伝播 アプリのリクエスト処理の途中にあるサービス(例:Webサーバー)には 既存手法と同様に計装が必要 評価・考察:プロトコル非依存の程度・制約 17 プロトコルごとに計装用ライブラリが必要 共通のOpenTelemetryライブラリを用いて計装可能
評価・考察:プロトコル非依存の程度・制約 サービス内伝播 アプリのリクエスト処理の末端にあるサービス(例:データベース)には 計装の必要なし 18 非同期処理(例:メッセージキュー) では処理の特性に合わせて 環境を分離するためにPiCoPプロキシ を拡張する必要あり プロキシを
拡張
まとめ・今後の課題 まとめ - プロトコル非依存でのマイクロサービス共用を実現するPiCoPを提案 - アプリケーション層プロトコルを解釈せずコンテクストを伝播する プロトコル - プロトコルを利用してリクエストを適当な環境へ振り分ける プロキシ
- 通信遅延やリソース削減の点で実用性を示した - コネクション再利用や非同期処理における制約を示した - OSSとして公開( https://github.com/picop-rd ) 今後の課題 - 上記の制約の改善 - 大規模なクラウドスケールでの評価 - PiCoPプロトコルが他の目的にどの程度応用可能かの評価 https://speakerdeck.com/hiroyaonoe/picop-ja 19