Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
バカが取ったバイキングの皿を持ってきたよ!!
Search
Hayato Tsukagoshi
June 01, 2020
Programming
0
2.1k
バカが取ったバイキングの皿を持ってきたよ!!
This slide describe Twitter bot 'ujimaru', which says words like uzimaru.
Hayato Tsukagoshi
June 01, 2020
Tweet
Share
More Decks by Hayato Tsukagoshi
See All by Hayato Tsukagoshi
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
770
Word Embeddings Are Steers for Language Models
hpprc
1
270
NLP2024 招待論文セッション: 定義文を用いた文埋め込み構成法
hpprc
1
130
修論発表.pdf
hpprc
0
110
YANS2024: 目指せ国際会議!「あぶない国際会議」
hpprc
0
270
Isotropy, Clusters, and Classifiers
hpprc
3
950
[輪講資料] Matryoshka Representation Learning
hpprc
5
2k
[輪講資料] Text Embeddings by Weakly-Supervised Contrastive Pre-training
hpprc
4
1.4k
[輪講資料] One Embedder, Any Task: Instruction-Finetuned Text Embeddings
hpprc
1
1.1k
Other Decks in Programming
See All in Programming
KoogではじめるAIエージェント開発
hiroaki404
1
130
One Enishi After Another
snoozer05
PRO
0
170
Devoxx BE - Local Development in the AI Era
kdubois
0
150
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
260
NixOS + Kubernetesで構築する自宅サーバーのすべて
ichi_h3
0
1.2k
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
570
contribution to astral-sh/uv
shunsock
0
550
ドメイン駆動設計のエッセンス
masuda220
PRO
15
6k
pnpm に provenance のダウングレード を検出する PR を出してみた
ryo_manba
1
160
TFLintカスタムプラグインで始める Terraformコード品質管理
bells17
2
480
3年ぶりにコードを書いた元CTOが Claude Codeと30分でMVPを作った話
maikokojima
0
690
Vueのバリデーション、結局どれを選べばいい? ― 自作バリデーションの限界と、脱却までの道のり ― / Which Vue Validation Library Should We Really Use? The Limits of Self-Made Validation and How I Finally Moved On
neginasu
2
1.7k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Speed Design
sergeychernyshev
32
1.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Gamification - CAS2011
davidbonilla
81
5.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
How to Ace a Technical Interview
jacobian
280
24k
What's in a price? How to price your products and services
michaelherold
246
12k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
670
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
GraphQLとの向き合い方2022年版
quramy
49
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Transcript
うじまる生誕LT会 バカが取ったバイキングの皿 を持って来たよ!! @hpp_ricecake
うじまる生誕LT会 hpp Twitter : @hpp_ricecake GitHub : hppRC
うじまる生誕LT会 作ったもの
うじまる生誕LT会 うぢまるくん
うじまる生誕LT会
うじまる生誕LT会
うじまる生誕LT会 実装内容
うじまる生誕LT会 - Ujimaru Reformer (不採用) - Ujimaru Markov Model
- Ujimaru Twitter Crawler - Ujimaru Twitter Client - Ujimaru API
うじまる生誕LT会 Ujimaru Reformer
うじまる生誕LT会 Ujimaru Reformer Reformer : NLP分野でSOTAな結果を出しまくったTransformerの高効率版 - うじまるくんのツイートを収集、8000文ほどを元データに(ごめん)
- Google Colaboratory で6時間ほど訓練 - 著者実装を参考にTPU(はやいやつ)で - 訓練したモデルから文生成をする(予定だった) - 生成結果は次のページ
うじまる生誕LT会 Ujimaru Reformer
うじまる生誕LT会 Ujimaru Reformer 反省点 - データが少なすぎる(最低でも100,000文くらいは欲しい...) 解決策 -
うじまるくんが1日4000ツイートくらいする - 日本語Wikiのデータを混ぜる(全然関係ないモデルに...) - データ数が少なくても大丈夫な言語モデルに変更する
うじまる生誕LT会 Ujimaru Markov Model
うじまる生誕LT会 Ujimaru Markov Model マルコフ連鎖 : 以前に出現した系列を元に次の出力を確率的に生成する -
うじまるくんの以前のツイートを元にモデルを作成 - ライブラリとして使えるように、JSONでモデルを出力 - 他の人のツイートも同じく収集して似た傾向の語彙を増強 - PyPIに登録したので`pip install ujimaru-markov-model`して `ujimaru`をするとうじまるくんが喋ります
うじまる生誕LT会 Ujimaru Markov Model
うじまる生誕LT会 Ujimaru Twitter Crawler
うじまる生誕LT会 Ujimaru Twitter Crawler 実装: GO - データ収集に利用 -
anacondaを使用(超便利) - Standard Search APIじゃ足りなかったので Premium Search API (無料枠)も使用 - anacondaにPremium APIを触るメソッドが生えてなかったのでforkして生や した
うじまる生誕LT会 Ujimaru Twitter Client
うじまる生誕LT会 Ujimaru Twitter Client 実装: Rust - ツイートの定期投稿に利用
- ツイートするテキストはAPIから取得 - Twitter API を叩くいい感じのライブラリがなかったので自作↓ - Kuonという名前のOSSとして公開しました(めっちゃWIP)
うじまる生誕LT会 Ujimaru API
うじまる生誕LT会 Ujimaru API 実装: Python (flask) - Cloud
Run でデプロイ (https://ujimaru-api-l3qfihnisq-an.a.run.app/tweet) - アクセスすると生成したテキストを返す - Docker imageをポイするだけなので超簡単
うじまる生誕LT会 Ujimaru API まとめ - ニューラルなモデルを使うときはデータ数に気を付ける - ソースコード
: https://github.com/hppRC/ujimaru - LTのスライドは内容を絞ろう
うじまる生誕LT会