F., Li, T. M., Sunkavalli, K., Hasan, M., ... & Durand, F. (2022, November). Differentiable rendering of neural sdfs through reparameterization. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9). • Vicini, D., Speierer, S., & Jakob, W. (2022). Differentiable signed distance function rendering. ACM Transactions on Graphics (TOG), 41(4), 1-18. • 点群 • Zhang, Q., Baek, S. H., Rusinkiewicz, S., & Heide, F. (2022, November). Differentiable point-based radiance fields for efficient view synthesis. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-12).Lassner, C., & Zollhofer, M. (2021). Pulsar: Efficient sphere-based neural rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1440-1449). • Lassner, C., & Zollhofer, M. (2021). Pulsar: Efficient sphere-based neural rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1440-1449). • Yifan, W., Serena, F., Wu, S., Öztireli, C., & Sorkine-Hornung, O. (2019). Differentiable surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG), 38(6), 1-14. • Pfister, H., Zwicker, M., Van Baar, J., & Gross, M. (2000, July). Surfels: Surface elements as rendering primitives. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (pp. 335-342). • NeRF & ボリューム • Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_24 • 汎用的テクニック • Xing, J., Luan, F., Yan, L. Q., Hu, X., Qian, H., & Xu, K. (2022). Differentiable Rendering using RGBXY Derivatives and Optimal Transport. ACM Transactions on Graphics (TOG), 41(6), 1-13. • Nicolet, B., Jacobson, A., & Jakob, W. (2021). Large steps in inverse rendering of geometry. ACM Transactions on Graphics (TOG), 40(6), 1-13. • 画像生成ネットワーク • Nguyen-Phuoc, T. H., Li, C., Balaban, S., & Yang, Y. (2018). Rendernet: A deep convolutional network for differentiable rendering from 3d shapes. Advances in neural information processing systems, 31. • Kips, R., Jiang, R., Ba, S., Duke, B., Perrot, M., Gori, P., & Bloch, I. (2022, May). Real‐time Virtual‐Try‐On from a Single Example Image through Deep Inverse Graphics and Learned Differentiable Renderers. In Computer Graphics Forum (Vol. 41, No. 2, pp. 29-40). • DR以前 • Sridhar, S., Oulasvirta, A., & Theobalt, C. (2013). Interactive markerless articulated hand motion tracking using RGB and depth data. In Proceedings of the IEEE international conference on computer vision (pp. 2456-2463). • Oikonomidis, I., Kyriazis, N., & Argyros, A. A. (2011, August). Efficient model-based 3D tracking of hand articulations using Kinect. In BmVC (Vol. 1, No. 2, p. 3). • Stenger, B., Thayananthan, A., Torr, P. H., & Cipolla, R. (2006). Model-based hand tracking using a hierarchical bayesian filter. IEEE transactions on pattern analysis and machine intelligence, 28(9), 1372-1384. • アプリケーション • Lin, C. H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., ... & Lin, T. Y. (2023). Magic3d: High-resolution text-to-3d content creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 300-309). • https://github.com/ascust/3DMM-Fitting-Pytorch.git • Kanazawa, A., Tulsiani, S., Efros, A. A., & Malik, J. (2018). Learning category-specific mesh reconstruction from image collections. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 371-386).. 160