programming. Discrete Optimization. 4. 4-20. https://doi.org/10.1016/j.disopt.2006.10.006 • Bayardo Jr, R. J., & Schrag, R. (1997). Using CSP look-back techniques to solve real-world SAT instances. In Aaai/iaai (pp. 203-208). • Devriendt, J., Gleixner, A. & Nordström, J. (2021), Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search. Constraints 26, 26 – 55. https://doi.org/10.1007/s10601-020-09318-x • J. P. Marques-Silva & K. A. Sakallah. (1999) GRASP: a search algorithm for propositional satisfiability. IEEE Transactions on Computers, vol. 48, no. 5, pp. 506-521. https://doi.org/10.1109/12.769433 • Gioni Mexi, Timo Berthold, Ambros Gleixner, Jakob Nordström. Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning. arXiv preprint arXiv:2307.14166. https://doi.org/10.48550/arXiv.2307.14166 • Nieuwenhuis, R. (2014). The IntSat Method for Integer Linear Programming. In: O’ Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_42 • Nieuwenhuis, R., Oliveras, A., & Rodríguez-Carbonell, E. (2023). IntSat: integer linear programming by conflict-driven constraint learning. Optimization Methods and Software, 39(1), 169 – 196. https://doi.org/10.1080/10556788.2023.2246167 • 田中大毅. (2024). 列挙の方法による market split 問題の解法, 日本オペレーションズ・リサーチ学会 2024 年春季研究 発表会アブストラクト集 2-D-12 51