$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MeCabとKerasを使ったテキスト分類
Search
masa-ita
February 23, 2019
Technology
1
500
MeCabとKerasを使ったテキスト分類
masa-ita
February 23, 2019
Tweet
Share
More Decks by masa-ita
See All by masa-ita
Ollamaを使ったLocal Language Model活用法
itagakim
1
170
Run Instant NeRF on Docker
itagakim
1
2.3k
3D Clustering and Metric Learning
itagakim
0
360
Cloud TPUの使い方〜BigBirdの日本語学習済みモデルを作る〜
itagakim
0
690
多言語学習済みモデルmT5とは?
itagakim
1
730
AWSのGPUを安く使ってTensorFlowモデルを訓練する方法
itagakim
0
380
最近の自然言語処理モデルの動向
itagakim
1
570
ディープラーニングで芸術はできるか?〜生成系ネットワークの進展〜
itagakim
0
350
AWSとTerraform初心者がやってみたこと
itagakim
1
480
Other Decks in Technology
See All in Technology
品質のための共通認識
kakehashi
PRO
3
260
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
7
1.6k
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
380
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
330
初めてのDatabricks AI/BI Genie
taka_aki
0
150
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.3k
第4回 「メタデータ通り」 リアル開催
datayokocho
0
130
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
680
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
180
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
120
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
380
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
76
5.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Practical Orchestrator
shlominoach
190
11k
RailsConf 2023
tenderlove
30
1.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
We Have a Design System, Now What?
morganepeng
54
7.9k
A better future with KSS
kneath
240
18k
Transcript
MeCabKeras 2019/2/23 @Python in
3F-*"% Q:<+/M@3F-*8L )9 3F O8L$?.
IDP6S E<6S >16S KFREG6S /M6S C4-*"% 3F-*8L)9 <JNF '0=A#&H ! 5 72; B, ("%
!!$A<7> 7>-=N-Gram .C(2 !$,@ 7>A<A1
0 # $?/<"A<85 3B!$, %&<*'9)+:. %&<*'D46 =;C2E6 0 Ex. MeCab
'!, ",*+$J8 AOIQH=
FORBFO"( E9 RLRB20N16AOIQ H= RLAAG>U &$ CV .@W73 RL?K MS 16E -D16/5:TH= /5:T;=46 )%#+P 46<
livedoor NHN Japan58+- 42 livedoor $' ) #%&* (!*
=. $'1,79 :6;HTML"/<30 https://www.rondhuit.com/download.html#ldcc
livedoor
MeCab
MeCab HN7GSMGegi−69PKPLW`8:%/0-$ &25iGQoegI _@eg1-*,.4'",BC? !.5)(
fdkRm 5'5 V;T[nUJaGoogle Inc. ^p\Ffh]cX +.3-5#><jl = Y ,"5DAbEZ O
MeCab MeCab C++ '& # !*(
Windows %$ https://taku910.github.io/mecab/#download #"+) 32 64 , https://github.com/ikegami-yukino/mecab/releases/tag/v0.996 #"+) Mac %$ Homebrew mecab, mecab-ipadic #!+) Ubuntu %$ apt mecab, mecab-ipadic #!+)
Keras
keras.preprocessing.text.Tokenizer /-.2 /- !%"(8$&5 * #31)76 0)% +4
', fit &5tokenize !%0) %
keras.preprocessing.sequence.pad_sequences ! ( " # $'%
&
BoW: Bag of Words # %EC* G DEC?
- J;/ F<+EC,8=@1/0&%) 58 ()! '"%*$* ,8I209&%) 58 /1 TF-IDF: Term Frequency Inverse Document Frequency EHI2 ><,8 EC:67B4A .1&% )3
Word Embedding a]!.$*2C<@ fTY=!UD :9RPJG5 a]J ?Z10,000 20,000K6
Ni '3&, &.$*2 7<a]![RP7dJ`RPe.$*2 F S< Word Embeddinga]gO Google A; Xb!LWord2vec^V \B W^Ec!80)2H_!LRP IM Word2vec&#(-%1/Qh@Ec!8 )"-1 +4%0)27> Ec!8<@
RNN: Recurrent Neural Network *-H,+.=8 G "!%AB !*DF
@162 ,'/5?)/ G#$&!:(8 RNN> C;79304E LSTMLong Short Term MemoryGRU Gated Recurrent Unit<
BoW DNN
Word EmbeddingGlobalAveragePooling1D
Word EmbeddingRNNLSTM DNN
BoWDNN 0.5E #9("%$)CBoW+/ DNN4: * DBG6GlobalAveragePooling1D1 !$=2F
A LSTM7H2F,- <4: ' ; 7I ?3>8)CLSTM 4: & @:4
NLP,B8?=4-1$!&)%+"C5>@.A 7EFDQ&A-1Sequence-to-Sequence($* Attention :($*.A;3 OpenAIGoogle
Transformer '#Allen Institute 2.ELMo Google G5($*3BERTOpenAI .6GPT-204 <($* 9/