Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MeCabとKerasを使ったテキスト分類
Search
masa-ita
February 23, 2019
Technology
1
460
MeCabとKerasを使ったテキスト分類
masa-ita
February 23, 2019
Tweet
Share
More Decks by masa-ita
See All by masa-ita
Ollamaを使ったLocal Language Model活用法
itagakim
1
42
Run Instant NeRF on Docker
itagakim
1
2.1k
3D Clustering and Metric Learning
itagakim
0
280
Cloud TPUの使い方〜BigBirdの日本語学習済みモデルを作る〜
itagakim
0
610
多言語学習済みモデルmT5とは?
itagakim
1
600
AWSのGPUを安く使ってTensorFlowモデルを訓練する方法
itagakim
0
320
最近の自然言語処理モデルの動向
itagakim
1
530
ディープラーニングで芸術はできるか?〜生成系ネットワークの進展〜
itagakim
0
280
AWSとTerraform初心者がやってみたこと
itagakim
1
420
Other Decks in Technology
See All in Technology
Storage Browser for Amazon S3
miu_crescent
1
240
C++26 エラー性動作
faithandbrave
2
780
Wantedly での Datadog 活用事例
bgpat
1
530
ハイテク休憩
sat
PRO
2
170
APIとはなにか
mikanichinose
0
100
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
290
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
270
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
560
普通のエンジニアがLaravelコアチームメンバーになるまで
avosalmon
0
110
第3回Snowflake女子会_LT登壇資料(合成データ)_Taro_CCCMK
tarotaro0129
0
200
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
0
210
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
32
6.3k
Music & Morning Musume
bryan
46
6.2k
It's Worth the Effort
3n
183
28k
For a Future-Friendly Web
brad_frost
175
9.4k
The Cult of Friendly URLs
andyhume
78
6.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
How to Ace a Technical Interview
jacobian
276
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Side Projects
sachag
452
42k
A better future with KSS
kneath
238
17k
Git: the NoSQL Database
bkeepers
PRO
427
64k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Transcript
MeCabKeras 2019/2/23 @Python in
3F-*"% Q:<+/M@3F-*8L )9 3F O8L$?.
IDP6S E<6S >16S KFREG6S /M6S C4-*"% 3F-*8L)9 <JNF '0=A#&H ! 5 72; B, ("%
!!$A<7> 7>-=N-Gram .C(2 !$,@ 7>A<A1
0 # $?/<"A<85 3B!$, %&<*'9)+:. %&<*'D46 =;C2E6 0 Ex. MeCab
'!, ",*+$J8 AOIQH=
FORBFO"( E9 RLRB20N16AOIQ H= RLAAG>U &$ CV .@W73 RL?K MS 16E -D16/5:TH= /5:T;=46 )%#+P 46<
livedoor NHN Japan58+- 42 livedoor $' ) #%&* (!*
=. $'1,79 :6;HTML"/<30 https://www.rondhuit.com/download.html#ldcc
livedoor
MeCab
MeCab HN7GSMGegi−69PKPLW`8:%/0-$ &25iGQoegI _@eg1-*,.4'",BC? !.5)(
fdkRm 5'5 V;T[nUJaGoogle Inc. ^p\Ffh]cX +.3-5#><jl = Y ,"5DAbEZ O
MeCab MeCab C++ '& # !*(
Windows %$ https://taku910.github.io/mecab/#download #"+) 32 64 , https://github.com/ikegami-yukino/mecab/releases/tag/v0.996 #"+) Mac %$ Homebrew mecab, mecab-ipadic #!+) Ubuntu %$ apt mecab, mecab-ipadic #!+)
Keras
keras.preprocessing.text.Tokenizer /-.2 /- !%"(8$&5 * #31)76 0)% +4
', fit &5tokenize !%0) %
keras.preprocessing.sequence.pad_sequences ! ( " # $'%
&
BoW: Bag of Words # %EC* G DEC?
- J;/ F<+EC,8=@1/0&%) 58 ()! '"%*$* ,8I209&%) 58 /1 TF-IDF: Term Frequency Inverse Document Frequency EHI2 ><,8 EC:67B4A .1&% )3
Word Embedding a]!.$*2C<@ fTY=!UD :9RPJG5 a]J ?Z10,000 20,000K6
Ni '3&, &.$*2 7<a]![RP7dJ`RPe.$*2 F S< Word Embeddinga]gO Google A; Xb!LWord2vec^V \B W^Ec!80)2H_!LRP IM Word2vec&#(-%1/Qh@Ec!8 )"-1 +4%0)27> Ec!8<@
RNN: Recurrent Neural Network *-H,+.=8 G "!%AB !*DF
@162 ,'/5?)/ G#$&!:(8 RNN> C;79304E LSTMLong Short Term MemoryGRU Gated Recurrent Unit<
BoW DNN
Word EmbeddingGlobalAveragePooling1D
Word EmbeddingRNNLSTM DNN
BoWDNN 0.5E #9("%$)CBoW+/ DNN4: * DBG6GlobalAveragePooling1D1 !$=2F
A LSTM7H2F,- <4: ' ; 7I ?3>8)CLSTM 4: & @:4
NLP,B8?=4-1$!&)%+"C5>@.A 7EFDQ&A-1Sequence-to-Sequence($* Attention :($*.A;3 OpenAIGoogle
Transformer '#Allen Institute 2.ELMo Google G5($*3BERTOpenAI .6GPT-204 <($* 9/