Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
410
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
890
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
86
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
RemoteFunctionを使ったコロケーション
mkazutaka
1
160
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.3k
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
430
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
2
530
serverless team topology
_kensh
3
250
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
130
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
1
1k
ストレージエンジニアの仕事と、近年の計算機について / 第58回 情報科学若手の会
pfn
PRO
4
920
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
380
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
580
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
0
220
251029 JAWS-UG AI/ML 退屈なことはQDevにやらせよう
otakensh
0
110
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Building Adaptive Systems
keathley
44
2.8k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Side Projects
sachag
455
43k
Facilitating Awesome Meetings
lara
57
6.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Producing Creativity
orderedlist
PRO
348
40k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Navigating Team Friction
lara
190
15k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.