Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
210
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
320
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
530
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
630
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
790
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
990
Entity representation with relational attention
izuna385
0
74
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
520
Other Decks in Technology
See All in Technology
デジタルアイデンティティ人材育成推進ワーキンググループ 翻訳サブワーキンググループ 活動報告 / 20250114-OIDF-J-EduWG-TranslationSWG
oidfj
0
540
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
2.1k
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
120
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
190
自社 200 記事を元に整理した読みやすいテックブログを書くための Tips 集
masakihirose
2
330
PaaSの歴史と、 アプリケーションプラットフォームのこれから
jacopen
7
1.5k
KMP with Crashlytics
sansantech
PRO
0
240
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
350
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
250
生成AI × 旅行 LLMを活用した旅行プラン生成・チャットボット
kominet_ava
0
160
2025年のARグラスの潮流
kotauchisunsun
0
790
Formal Development of Operating Systems in Rust
riru
1
420
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1366
200k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
870
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
Code Review Best Practice
trishagee
65
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Practical Orchestrator
shlominoach
186
10k
Designing Experiences People Love
moore
139
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
The Invisible Side of Design
smashingmag
299
50k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.