Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
430
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
600
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
680
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
91
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
2k
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.5k
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
130
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
200
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
1
200
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
0
110
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
1
110
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
Kiro を用いたペアプロのススメ
taikis
4
1.9k
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.3k
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
170
コールドスタンバイ構成でCDは可能か
hiramax
0
100
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
240
Become a Pro
speakerdeck
PRO
31
5.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
We Are The Robots
honzajavorek
0
120
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
870
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
410
Darren the Foodie - Storyboard
khoart
PRO
0
2k
Designing Experiences People Love
moore
143
24k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
GraphQLとの向き合い方2022年版
quramy
50
14k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
290
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.