Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
230
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
380
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
580
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
870
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
AI工学特論: MLOps・継続的評価
asei
10
1.8k
Shadow DOMとセキュリティ - 光と影の境界を探る / Shibuya.XSS techtalk #13
masatokinugawa
0
300
AIを使っていい感じにE2Eテストを書けるようになるまで / Trying to Write Good E2E Tests with AI
katawara
3
1.8k
Recoil脱却の現状と挑戦
kirik
3
420
ecspressoの設計思想に至る道 / sekkeinight2025
fujiwara3
12
1.9k
OTel 公式ドキュメント翻訳 PJ から始めるコミュニティ活動/Community activities starting with the OTel official document translation project
msksgm
0
280
なぜAI時代に 「イベント」を中心に考えるのか? / Why focus on "events" in the age of AI?
ytake
2
740
KCD Lima: eBee in Peru!
lizrice
0
100
スプリントレビューを効果的にするために
miholovesq
9
1.6k
DatabricksのOLTPデータベース『Lakebase』に詳しくなろう!
inoutk
0
140
Snowflake のアーキテクチャは本当に筋がよかったのか / Data Engineering Study #30
indigo13love
0
270
AWS表彰プログラムとキャリアについて
naoki_0531
1
130
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
Navigating Team Friction
lara
187
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
A designer walks into a library…
pauljervisheath
207
24k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
760
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
370
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
The Language of Interfaces
destraynor
158
25k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.