Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
210
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
330
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
530
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
640
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
800
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1k
Entity representation with relational attention
izuna385
0
75
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
530
Other Decks in Technology
See All in Technology
Building Products in the LLM Era
ymatsuwitter
10
5.5k
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
17
6.8k
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
250
開発スピードは上がっている…品質はどうする? スピードと品質を両立させるためのプロダクト開発の進め方とは #DevSumi #DevSumiB / Agile And Quality
nihonbuson
2
3k
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
利用終了したドメイン名の最強終活〜観測環境を育てて、分析・供養している件〜 / The Ultimate End-of-Life Preparation for Discontinued Domain Names
nttcom
2
200
Goで作って学ぶWebSocket
ryuichi1208
1
1.2k
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
260
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
オブザーバビリティの観点でみるAWS / AWS from observability perspective
ymotongpoo
8
1.5k
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
540
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Unsuck your backbone
ammeep
669
57k
Bash Introduction
62gerente
611
210k
Building an army of robots
kneath
303
45k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
YesSQL, Process and Tooling at Scale
rocio
172
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Adopting Sorbet at Scale
ufuk
74
9.2k
Music & Morning Musume
bryan
46
6.3k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.