$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
420
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
600
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
900
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
89
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
580
Other Decks in Technology
See All in Technology
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
140
Noを伝える技術2025: 爆速合意形成のためのNICOフレームワーク速習 #pmconf2025
aki_iinuma
2
1.7k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
660
Agentic AI Patterns and Anti-Patterns
glaforge
1
140
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
180
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
45
27k
Bakuraku Engineering Team Deck
layerx
PRO
11
6.3k
たかが特別な時間の終わり / It's Only the End of Special Time
watany
27
7.3k
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
9
6.3k
【AWS re:Invent 2025速報】AIビルダー向けアップデートをまとめて解説!
minorun365
4
390
原理から解き明かす AIと人間の成長 - Progate BAR
teba_eleven
2
300
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
9
2k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Speed Design
sergeychernyshev
33
1.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Being A Developer After 40
akosma
91
590k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Producing Creativity
orderedlist
PRO
348
40k
BBQ
matthewcrist
89
9.9k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.