Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
210
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
330
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
530
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
630
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
800
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1k
Entity representation with relational attention
izuna385
0
74
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
530
Other Decks in Technology
See All in Technology
ObservabilityCON on the Road Tokyoの見どころ
hamadakoji
0
240
ソフトウェア開発現代史:製造業とソフトウェアは本当に共存できていたのか?品質とスピードを問い直す
takabow
15
5.6k
ココナラのセキュリティ組織の体制・役割・今後目指す世界
coconala_engineer
0
230
依存関係があるコンポーネントは Barrel ファイルでまとめよう
azukiazusa1
1
300
事業継続を支える自動テストの考え方
tsuemura
0
140
マルチデータプロダクト開発・運用に耐えるためのデータ組織・アーキテクチャの遷移
mtpooh
1
330
アンチパターンのアーキテクチャと組織 / Anti-Pattern Software Architecture and Organization
oztick139
0
120
AIをプロダクトに実装するならAPIで分離しよう 〜タクシーアプリ『GO』のアーキテクチャ実例紹介〜
74th
2
110
[2024年10月版] Notebook 2.0のご紹介 / Notebook2.0
databricksjapan
0
1.7k
GitLab SelfManagedをCodePipelineのソースに設定する/SetGitLabSelfManagedtoCodePipeline
norihiroishiyama
1
120
Ask! NIKKEIの運用基盤と改善に向けた取り組み / NIKKEI TECH TALK #30
kaitomajima
0
150
DeepSeek on AWS
hariby
1
170
Featured
See All Featured
Building Applications with DynamoDB
mza
93
6.2k
Statistics for Hackers
jakevdp
797
220k
Code Review Best Practice
trishagee
65
17k
Practical Orchestrator
shlominoach
186
10k
Side Projects
sachag
452
42k
The Language of Interfaces
destraynor
156
24k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
990
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
How to train your dragon (web standard)
notwaldorf
90
5.8k
GraphQLとの向き合い方2022年版
quramy
44
13k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.