Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
440
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
610
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
690
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.2k
Entity representation with relational attention
izuna385
0
95
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
460
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
110
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
210
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
5
3k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
180
プロポーザルに込める段取り八分
shoheimitani
1
190
20260204_Midosuji_Tech
takuyay0ne
1
140
Featured
See All Featured
Test your architecture with Archunit
thirion
1
2.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
The agentic SEO stack - context over prompts
schlessera
0
630
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Raft: Consensus for Rubyists
vanstee
141
7.3k
The Invisible Side of Design
smashingmag
302
51k
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
The SEO Collaboration Effect
kristinabergwall1
0
350
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
300
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.