Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Semi-Supervised Graph Classification: A Hierar...
Search
izuna385
May 28, 2019
Technology
0
240
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective(WWW19)
This slide is for supplement of reading paper, so it doesn't hold presentation-slide style, sorry.
izuna385
May 28, 2019
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
400
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
880
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
86
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
Goにおける 生成AIによるコード生成の ベンチマーク評価入門
daisuketakeda
2
110
許しとアジャイル
jnuank
1
130
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
77k
バイブコーディングと継続的デプロイメント
nwiizo
2
440
社内お問い合わせBotの仕組みと学び
nish01
0
430
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
150
SOC2取得の全体像
shonansurvivors
1
400
LLMアプリケーション開発におけるセキュリティリスクと対策 / LLM Application Security
flatt_security
7
1.9k
Trust as Infrastructure
bcantrill
0
350
AWSにおけるTrend Vision Oneの効果について
shimak
0
130
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
420
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
430
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.1k
Done Done
chrislema
185
16k
Designing for Performance
lara
610
69k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
GitHub's CSS Performance
jonrohan
1032
460k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
The Cult of Friendly URLs
andyhume
79
6.6k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Statistics for Hackers
jakevdp
799
220k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Documentation Writing (for coders)
carmenintech
75
5k
Transcript
1 (Supplement slides for reading paper) Semi-Supervised Graph Classification: A
Hierarchical Graph Perspective(WWW19) izunan385
Li, Jia, et al. "Semi-Supervised Graph Classification: A Hierarchical Graph
Perspective." (2019).
• Task Collect Class Prediction for unlabeled
• input each graph instance: g labeled graph set and
unlabeled graph set graph instance adjacency matrix
• output IC(graph Instance Classifier) receives graph info and outputs
instance representation matrix predicted class probability vector HC(Hierarchical Graph Classifier) receives all graph instance( ) representation from IC graph-graph adjacency matrix and outputs predicted class prob matrix for all
• Task Collect Class Prediction for unlabeled • Loss function
labeled graph instances unlabeled graph instances
• Supervised Loss (for labeled graphs ) • Disagreement Loss(for
unlabeled graphs ) Disagreement means IC and HC prediction mismatch.
None
GCN W0: learnable parameter
GCN with self loop W0: learnable parameter
GCN(summarized) 0 https://www.experoinc.com/post/node-classification-by-graph-con network Adjacent/co-occurrence matrix has structure information. Propagation
rule is learned during training.
https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
Cautious Iteration
Cautious Iteration Here, sampling top confident prediction for each step
Active Iteration Disagreement means IC and HC prediction mismatch. Ask
annotator for annotating class of graphs which HC and IC have top-disagreement with.