Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時間の矢について / Time's arrow
Search
kaityo256
PRO
January 12, 2024
Education
13
18k
時間の矢について / Time's arrow
エーレンフェストの壺と不可逆性
kaityo256
PRO
January 12, 2024
Tweet
Share
More Decks by kaityo256
See All by kaityo256
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
5
980
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
8
1.5k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
6
2.6k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
6
580
論文紹介のやり方 / How to review
kaityo256
PRO
17
86k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
15
1.7k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
610
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.4k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
1.4k
Other Decks in Education
See All in Education
教える側は、初学者に谷越えまで伴走すべき(ダニング・クルーガー効果からの考察)
hysmrk
3
140
20250830_MIEE祭_会社員視点での学びのヒント
ponponmikankan
1
170
Ch1_-_Partie_1.pdf
bernhardsvt
0
400
EVOLUCIÓN DE LAS NEUROCIENCIAS EN LOS CONTEXTOS ORGANIZACIONALES
jvpcubias
0
180
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
880
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.5k
2025/06/05_読み漁り学習
nag8
0
210
探査機自作ゼミ2025スライド
sksat
3
800
American Airlines® USA Contact Numbers: The Ultimate 2025 Guide
lievliev
0
250
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
190
チーム開発における責任と感謝の話
ssk1991
0
310
中央教育審議会 教育課程企画特別部会 情報・技術ワーキンググループに向けた提言 ー次期学習指導要領での情報活用能力の抜本的向上に向けてー
codeforeveryone
0
280
Featured
See All Featured
Docker and Python
trallard
46
3.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
GitHub's CSS Performance
jonrohan
1032
460k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Automating Front-end Workflow
addyosmani
1371
200k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
4 Signs Your Business is Dying
shpigford
185
22k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Transcript
1 28 慶應義塾大学理工学部物理情報工学科 渡辺宙志 2024年1月12日 研究室ミーティング 時間の矢について
2 28 時間の矢とは? 我々の感じる「時間」は一方向に流れている 過去の記憶はあるが、未来の記憶はない これはなぜだろう?
3 28 時間反転対称性 ミクロな支配方程式は時間反転対称性を持つ 𝑚 𝑑2𝑥 𝑑𝑡2 = 𝐹(𝑥) 例:ニュートンの運動方程式
運動を録画したビデオを逆再生してもどちらが 正方向か区別がつかない 時間に関して二階微分 →もし𝑥(𝑡)が解なら、𝑥(−𝑡)も解
4 28 時間反転対称性 マクロな支配方程式は時間反転非対称性 𝜕𝜌 𝜕𝑡 = 𝐷 𝜕2𝜌 𝜕𝑥2
例:拡散方程式 時間に関して一階微分 →もし𝜌(𝑥, 𝑡)が解でも、𝜌(𝑥, −𝑡)は解にならない 拡散現象を録画したビデオを逆再生したら逆再 生とわかる
5 28 ミクロからマクロへ 水にインクを垂らすと拡散していく 水原子の動き 𝑚 𝑑2𝑥 𝑑𝑡2 = 𝐹(𝑥)
𝜕𝜌 𝜕𝑡 = 𝐷 𝜕2𝜌 𝜕𝑥2 マクロには時間反転非対称 ミクロには時間反転対称
6 28 エーレンフェストの壺 1 2 3 4 5 6 •
2つ壺を用意する • 数字が書かれた玉をN個用意する • 一つの玉をランダムに選んで、その玉をもう一方に移す • 最初は片方にすべての玉を入れておく • 片方の壺の玉の数の時間発展を追う
7 28 エーレンフェストの壺 N=10の場合 ステップ 壺 の 中 の 玉
の 数
8 28 エーレンフェストの壺 N=100の場合 ステップ 壺 の 中 の 玉
の 数
9 28 エーレンフェストの壺 N=1000の場合 ステップ 壺 の 中 の 玉
の 数 どんな状態からスタートしても 玉が半分ずつの状態に収束する
10 28 エーレンフェストの壺 1 2 3 4 5 6 ミクロな操作は可逆
マクロな観測事実は不可逆 時間の矢 どこで時間反転対称性が破れたのか? ※逆過程が等確率で起きる ※初期条件を忘れる
11 28 玉が1個の場合 玉が一つの場合、右側の壺の状態は二通り 1 玉がない 玉がある
12 28 玉が1個の場合 マルコフ遷移図 1 1 状態がくるくる回ってしまって定常状態にならない (偶数回と奇数回でそれぞれ必ず異なる状態になる) 1
13 28 エーレンフェストの壺(改) 1 2 3 4 5 6 •
2つ壺を用意する • 数字が書かれた玉をN個用意する • 一つの玉をランダムに選んでその玉をもう一方に移すが、 確率ε(0< ε <1)でなにもしない • 最初は片方にすべての玉を入れておく • 片方の壺の玉の数の時間発展を追う
14 28 玉が1個の場合 マルコフ遷移図 1 − 𝜀 同じ状態にとどまる可能性があるため、定常状態が存在する 1 −
𝜀 𝜀 𝜀 1
15 28 確率の時間発展と定常状態 1 tステップ目に玉がない確率 𝑝𝜙 𝑡 𝑝1 𝑡 tステップ目に玉がある確率
16 28 確率の時間発展と定常状態 𝑝𝜙 𝑡+1= 𝜀𝑝𝜙 𝑡 + (1 −
𝜀)𝑝1 𝑡 𝑝1 𝑡+1= (1 − 𝜀)𝑝𝜙 𝑡 + 𝜀𝑝1 𝑡 確率の時間発展 Ԧ 𝑝𝑡 = 𝑝𝜙 𝑡 𝑝1 𝑡 と書くと Ԧ 𝑝𝑡+1 = 𝑀 Ԧ 𝑝𝑡 𝑀 = 𝜀 1 − 𝜀 1 − 𝜀 𝜀 ただし
17 28 確率の時間発展と定常状態 Ԧ 𝑝1 = 𝑀 Ԧ 𝑝0 この𝑀を遷移行列、もしくはマルコフ行列と呼ぶ
確率ベクトルに𝑀をかける→時間が1ステップ進む 無限回かける→(もしあれば)定常状態が得られる Ԧ 𝑝∞ = 𝑀∞ Ԧ 𝑝0 Ԧ 𝑝2 = 𝑀 Ԧ 𝑝1 = 𝑀2 Ԧ 𝑝0 ⋮
18 28 確率の時間発展と定常状態 𝑀 = 𝜀 1 − 𝜀 1
− 𝜀 𝜀 マルコフ行列の最大固有値は1 最大固有値に対応する固有ベクトルが定常状態 Ԧ 𝑝∞ = 𝑀 Ԧ 𝑝∞ もし Ԧ 𝑝∞ が定常状態なら、 𝑀をかけても状態がかわらない に対応する固有ベクトルは Ԧ 𝑝∞ = 1/2 1/2 定常状態は2つの状態が等確率で現れる 1 =
19 28 玉が2個の場合 1 tステップ目に玉がない確率 𝑝𝜙 𝑡 𝑝1 𝑡 tステップ目に玉1がある確率
2 𝑝2 𝑡 tステップ目に玉2がある確率 𝑝12 𝑡 tステップ目に玉1,2がある確率 2 1
20 28 マルコフ遷移図(N=2) 1 2 2 1 𝜀 1 2
(1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 𝜀 𝜀 𝜀
21 28 ミクロな対称性 1 確率1/2で玉1が選ばれ、かつ確率(1 − 𝜀)で玉を移す 1 2 (1
− 𝜀) 1 1 2 (1 − 𝜀) すべての2つの状態間の遷移確率は等しい 全ての過程と逆過程は等確率で起きる →可逆過程
22 28 遷移行列 𝑀 = 𝜀 𝑐 𝑐 0 𝑐
𝜀 0 𝑐 𝑐 0 𝜀 𝑐 0 𝑐 𝑐 𝜀 𝑐 ≡ 1 2 1 − 𝜀 Ԧ 𝑝∞ = 1/4 1/4 1/4 1/4 最大固有値に対応する固有ベクトル 十分時間が経つと、全てのミクロな状態は等確率で出現する →等重率の原理 1 2 2 1 = = =
23 28 粗視化 1 2 = = 玉の数字を見ないことにする 同一視
24 28 粗視化 十分時間がたった後に片方の壺を観察すると 𝑝0 = 1 4 𝑝1 =
1 2 𝑝2 = 1 4 玉がない 玉が1個 玉が2個 1 2 玉が1つ(=N/2)ある状態を観測する確率が最も高くなった
25 28 粗視化:玉がN個の場合 十分時間がたった後に片方の壺を観察すると 玉がない 玉が1個 𝑝0 = 1 2𝑁
𝑝1 = 𝑁 2𝑁 … 玉がn個 𝑝𝑛 = 𝐶𝑛 2𝑁 𝑁 N個の玉がある→ミクロな状態は2𝑁個 n個の玉がある状態→ 𝐶𝑛 個 𝑁
26 28 粗視化:玉がN個の場合 𝑁 = 1000 Nが大きい時にN/2を中心とするガウス分布に収束 玉の数がほぼN/2である状態が観測される 𝑛 𝑝𝑛
27 28 まとめ 現実のこの世界は・・・? • エーレンフェストの壺はミクロには可逆、マクロには不可逆 • ミクロとは「全ての玉の番号を知っている状態」 • マクロとは「玉の区別をなくした状態」
• ミクロにはすべての状態が等確率で出現する →等重率の原理 • マクロには玉が半分ずつに分かれる状態に収束する →時間の矢 • 古典的には「粗視化」が時間反転対称性を破る
28 28 参考 https://www.gakushuin.ac.jp/~881791/materials/Irreversiblity09.pdf スライドを作成するにあたり以下を参考にさせていただきました (本スライドの誤り、思い違いなどはすべて渡辺の責任です)