Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数というものの見方 / View from Linear Algebra
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kaityo256
PRO
December 08, 2020
Education
8
6k
線形代数というものの見方 / View from Linear Algebra
講義のオフィス・アワーの余談
kaityo256
PRO
December 08, 2020
Tweet
Share
More Decks by kaityo256
See All by kaityo256
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
13
7.1k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.7k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
12
4.5k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
8
780
論文紹介のやり方 / How to review
kaityo256
PRO
18
90k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
2k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
730
Other Decks in Education
See All in Education
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
100
The Next Big Step Toward Nuclear Disarmament
hide2kano
0
230
Microsoft Office 365
matleenalaakso
0
2.1k
【ベテランCTOからのメッセージ】AIとか組織とかキャリアとか気になることはあるけどさ、個人の技術力から目を背けないでやっていきましょうよ
netmarkjp
2
3k
TeXで変える教育現場
doratex
1
14k
IHLヘルスケアリーダーシップ研究会17期説明資料
ihlhealthcareleadership
0
960
Introduction - Lecture 1 - Information Visualisation (4019538FNR)
signer
PRO
0
5.1k
AIでキミの未来はどう変わる?
behomazn
0
110
Cifrado asimétrico
irocho
0
390
✅ レポート採点基準 / How Your Reports Are Assessed
yasslab
PRO
0
280
MySmartSTEAM 2526
cbtlibrary
0
190
Featured
See All Featured
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
4 Signs Your Business is Dying
shpigford
187
22k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
81
The Pragmatic Product Professional
lauravandoore
37
7.1k
Done Done
chrislema
186
16k
Everyday Curiosity
cassininazir
0
140
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
エンジニアに許された特別な時間の終わり
watany
106
230k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
1 線形代数というものの見方 慶應義塾大学理工学部物理情報工学科 渡辺 2020/12/8
2 先生方は線形代数が大事大事って連呼するけど、 何がそんなに大事なの?何を覚えれば良いの? 線形代数はもちろん大事な学問ですが、大事なのは 「線形代数」という「ものの見方」です
3 線形空間における要素の間の代数的構造を調べる学問 線形空間Vとは 要素の線形和がまたその空間の要素になる Ԧ , Ԧ ∈ ⟹ a
Ԧ + Ԧ ∈ 例:3次元ベクトル , () ∈ ⟹ a + ∈ 例:関数
4 「構造」が同じなら、もとが何であったか気にしなくて良い 3次元ベクトル 関数 内積 ( Ԧ , Ԧ )
≡ Ԧ ∙ Ԧ (, ) ≡ න ∗ 固有値 固有ベクトル Ԧ = λ Ԧ = λ = e 直交、基底、固有値、固有ベクトルといった考えが そのまま関数にも使える→フーリエ・ラプラス解析
5 • 円を10等分し、0から9まで数字を書く • ある段の「一の位」を結んでいく • 1の段から9の段までやる • どんな図形がでてくるか? 例:3の段
0→3→6→9→2→5→8→1→4→7→0
6 • 1と9、2と8など「足して10」になる数は同じ形 • 5は同じ形が存在しない なぜそんな性質を持っているのだろう?
7 0から9までの目盛りがあるダイアル 時計回りにn目盛り回す操作: 演算が閉じている = + 結合則が成り立つ ( ) =(
) 単位元が存在する 0 逆元が存在する この操作とダイアルの状態は群を作る −1 = 10−
8 反時計まわりに角度θだけ回す操作 ダイアルの状態をベクトル で表すと 1 0 = cos − sin
sin cos n目盛り回す操作: = 2/10 の表現 ※回転方向が逆だけど許して
9 = cos − sin sin cos 回転行列は直交行列 直交行列Mの性質 •
行・列ベクトルがそれぞれ正規直交基底をなす • 転置行列が逆行列になる = 1 = 0 = ∴ = −1
10 = cos − sin sin cos = cos sin
−sin cos = − 回転行列 回転行列の転置 右にn目盛り回す操作: 10− = − 10-n目盛り回すと逆元: −1 = 10− 転置とると逆元: = −1 = −
11 10− = − 10−5 = 5 右に10-n目盛り回す=左にn目盛り回す 自己共役 共役
同じ形を持つ操作の表現はお互いに随伴行列(エルミート共役)の関係
12 一次元調和振動子の運動方程式 ሶ = − ሶ = Ԧ () =
() () とベクトル表示すると Ԧ = Ԧ = 0 −1 1 0
13 Ԧ = Ԧ を形式的に解くと Ԧ = exp() Ԧ 0
exp = + + 2 2 2 + ⋯ + ! + ⋯ を計算する必要がある
14 行列の対角化 = −1 対角行列 = ( −1) = −1−1−1
⋯ −1 = −1 ∴ = −1 ※今回はこれ使わなくても計算できるけど
15 = 0 −1 1 0 exp = cos −sin
sin cos 一次元調和振動子の運動方程式 ሶ = − ሶ = 回転行列 は回転を表していた 回転行列の生成子 (微小回転)
16 時間発展が「回転」なのだから「半径」が保存する(※) Ԧ = 半径の2乗 | Ԧ |2 = 2
+ 2 = 2 • 運動方程式は微小回転を表している • 時間発展は時間を角度とした回転 • エネルギーは回転の保存量 ※より正確には、保存しているのは面積 エネルギーの2倍
17 「群を作る操作」の表現として行列が出てくる 操作の性質は行列の性質として現れる • 回転行列は直交行列 • 直交行列は転置が逆行列 • 回転の逆行列は逆回転 運動方程式にも行列が現れる
• 時間発展とは広義の回転である • 時間とは回転角度である • 行列の指数関数の計算に対角化が必要になる • 操作の保存量としてエネルギーが現れる (行列式が関係している)
18 今日説明できなかったけど重要なこと • 微分や行列は「線形演算子」として同一視できる • フーリエ変換は基底の取り換えである • 時間発展演算子の最大固有値の状態が平衡状態 • etc.
要するに何がいいたかったの? 行列とは広い意味で回転を表すと思うと いろいろ見えてくるものがあるということ ※要するに様々なところに線形代数が現れる