Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Dockerで体験する富岳のアーキテクチャ「AArch64」ハンズオン / Xbyak_aar...

kaityo256
November 25, 2021

Dockerで体験する富岳のアーキテクチャ「AArch64」ハンズオン / Xbyak_aarch64 handson

Dockerで体験する富岳のアーキテクチャ「AArch64」ハンズオン資料
https://github.com/kaityo256/xbyak_aarch64_handson

kaityo256

November 25, 2021
Tweet

More Decks by kaityo256

Other Decks in Programming

Transcript

  1. 4 38 適当な場所(~/github)でリポジトリをクローン ハンズオン資料「富岳実機での動作」 cd github git clone --recursive https://github.com/kaityo256/xbyak_aarch64_handson.git

    インタラクティブキューに入ってXbyakのビルド cd xbyak_aarch64_handson # ここでインタラクティブキューに入る cd xbyak_aarch64/ make 環境変数の設定 export XBYAK_PATH=~/github/xbyak_aarch64_handson/xbyak_aarch64 export CPLUS_INCLUDE_PATH=$XBYAK_PATH export LIBRARY_PATH=$XBYAK_PATH/lib 組み込み関数はFCC、Xbyakは g++ filename.cpp -lxbyak_aarch64でビルドできる
  2. 6 38 ノード数:158976 ネットワーク: Tofu (24,23,24,2,3,2) 1CPU/1ノード 4CMG + 2アシスタントコア/1CPU

    12 core/ 1CMG ISA: Armv8.2-A + SVE プログラマから見た この辺はMPI この辺はOpenMP ここをどうするか?
  3. 7 38 ARM x86 命令セット総称 AArch32 (A32) AArch64 (A64) IA-32

    AMD64, Intel64 拡張命令セット MMX, SSE,AVX, AVX2, AVX-512 NEON SVE マイクロ アーキテクチャ A64fx Skylake ↑が実装する 命令セット ARMv8.2-A + SVE Intel64+MMX+SSE+... +AVE-512+... gccに渡す オプション -march=armv8-a+sve -mave2, -mavx512f, ... or -march=skylake
  4. 9 38 性能 動作 周波数 コア数 同時命令 発行数 SIMD =

    x x x ここを上げたい ここはもう無理 ここも多分無理 ここを増やす (メニーコア) ここを増やす (幅広SIMD)
  5. 10 38 x86の場合 xmm ymm zmm 128 bit 256 bit

    512 bit 順調に倍々ゲームで増えてきた
  6. 19 38 svfloat64_t レジスタにfloat64_tが詰まっているとして扱う コンパイル時に要素数が確定しない 512ビットレジスタなら8要素 std::vector<float64_t> a; svbool_t tp

    = svptrue_b64(); svfloat64_t va = svld1_f64(tp, a.data()); svbool_t プレディケートレジスタを表す型 コンパイル時にビット長が確定しない こんな感じに使う
  7. 20 38 Pros • 関数の呼び出し規約を気にしなくて良い • アドレッシングを気にしなくて良い • レジスタ割り当てを気にしなくて良い •

    コンパイラによる最適化が期待できる Cons • 組み込み関数以外の場所は制御できない • コンパイラが余計なことをする場合がある
  8. 22 38 struct Code : Xbyak_aarch64::CodeGenerator { Code() { mov(w0,

    1); ret(); } }; int main() { Code c; auto f = c.getCode<int (*)()>(); c.ready(); printf("%d¥n",f()); } Xbyak_aarch64::CodeGeneratorを継承し、コンストラクタに アセンブリに対応したコードを並べておく テンプレートに関数のシグネチャを指定して関数へのポインタを取得 その関数を呼び出す
  9. 23 38 実行時にメモリを確保して、そこに実行時に命令を並べる struct Code : Xbyak_aarch64::CodeGenerator { Code() {

    mov(w0, 1); ret(); } }; f: mov w0, 1 ret int main() { Code c; auto f = c.getCode<int (*)()>(); c.ready(); printf("%d¥n",f()); } その領域に実行権限をつけ、先頭アドレスを 呼び出すことで関数として使う ※x86では不要だが、ARMでは実行前にready()を呼ぶ必要がある
  10. 24 38 Pros • 実行時の情報を使ったコード生成ができる • キャッシュサイズやCPUの種類 • コンパイル時に決まらない実行時定数 •

    書いた通りに動く • 生アセンブリより書きやすい Cons • 関数の呼び出し規約やアドレッシング等の アセンブリの知識必須 • ローカル変数を自分で管理する必要がある • レジスタ割り当てをする必要がある
  11. 25 38 先ほどmakeしたディレクトリでmake runすれば Dockerの中に入ることができる $ make run [user@291e9d9cad93 ~]$

    xbyak_aarch64_handson/sampleにサンプルコードがある • intrinsic/01_sve_length • xbyak/01_test 以下でそれぞれ動作テストをする
  12. 26 38 プレディケートレジスタ (PR) SVEのレジスタは128ビット x N プレディケートレジスタは最低8ビット単位 → レジスタ長は16ビット

    x N 512ビットならN=4なので、PRは64ビット 1. どの型に使うかにより、立てるビットが異なる 2. 立てるパターンを指定できる 3. レジスタ長を変えて実行してみる 確認すること
  13. 27 38 svptrue_b8() svptrue_pat_b8(SV_ALL) 組み込み関数 アセンブリ 64bit svptrue_b16() svptrue_pat_b16(SV_ALL) 組み込み関数

    アセンブリ 0101010101010101010101010101010101010101010101010101010101010101 1111111111111111111111111111111111111111111111111111111111111111 svptrue_b32 svptrue_b64 ptrue p0.s, ALL ptrue p0.d, ALL ptrue p0.h, ALL ptrue p0.b, ALL
  14. 28 38 レジスタへのロード 確認すること 1. 指定の先頭アドレスからまとめてレジスタにロードできる 2. 一回の命令で複数要素まとめて演算できる 3. 演算にマスク処理ができる

    4. inactiveな要素に対して 1. ゼロクリアする (zeroing predication) 2. 第一引数透過 (merging predication) svfloat64_t型へのロードや加算を試してみる
  15. 29 38 double a[] = {0, 1, 2, 3, 4,

    5, 6, 7}; svfloat64_t va = svld1_f64(svptrue_b64(), a); 0 1 2 3 4 5 6 7 メモリ SVレジスタ 0 1 2 3 4 5 6 7 プレディケート レジスタ
  16. 30 38 0 1 2 3 4 5 6 7

    1 1 1 1 1 1 1 1 + 1 2 3 4 5 6 7 8 そのまま全部足す va vb
  17. 31 38 0 1 2 3 4 5 6 7

    1 1 1 1 1 1 1 1 + 1 2 0 0 0 0 0 0 Inactiveな場所はゼロクリア (zeroing predication) va vb svadd_f64_z(svptrue_pat_b64(SV_VL2), va, vb)
  18. 32 38 0 1 2 3 4 5 6 7

    1 1 1 1 1 1 1 1 + 1 2 Inactiveな場所は透過 (merging predication) va vb svadd_f64_m(svptrue_pat_b64(SV_VL2), va, vb) 2 3 4 5 6 7
  19. 33 38 ABI (Application Binary Interface)が定めるものの一つ 関数を呼び出す時、引数をどうやって渡すか、返り値を どう返すかを定める int f(int

    i){ return i + 1; } struct Code : Xbyak_aarch64::CodeGenerator { Code() { add(w0, w0, 1); ret(); } }; こんな関数を作りたい Xbyakではこう書く 整数の第一引数がレジスタw0に渡され、返り値を w0に入れてretすることを知っている必要がある
  20. 34 38 Xbyakのコードは動的に作られるため、実行時までアセンブリがわからない → 実行時のコードをダンプし、逆アセンブルすることでデバッグする #include <cstdio> #include <xbyak_aarch64/xbyak_aarch64.h> struct

    Code : Xbyak_aarch64::CodeGenerator { Code() { mov(w0, 1); ret(); } void dump(const char *filename) { FILE *fp = fopen(filename, "wb"); fwrite(getCode(), 1, getSize(), fp); } }; ファイル名を受け取り 機械語バイナリを保存
  21. 35 38 int main() { Code c; auto f =

    c.getCode<int (*)(int)>(); c.ready(); c.dump("xbyak.dump"); printf("%d¥n",f(10)); } ここでダンプをxbyak.dump という名前で保存 実行するとxbyak.dumpができるので、objdumpで逆アセンブル $ aarch64-linux-gnu-objdump -D -maarch64 -b binary -d xbyak.dump 0000000000000000 <.data>: 0: 52800020 mov w0, #0x1 // #1 4: d65f03c0 ret 長いので xdump にaliasをはってある
  22. 36 38 1 2 3 4 5 15 与えられた配列の要素が 3の倍数なら-1

    5の倍数なら-2 15の倍数なら-3 で上書きする ・・・ 1 2 -1 4 -2 -3 ・・・ 16 16
  23. 37 38 1 2 3 4 5 15 ・・・ 16

    0 0 3 3 3 15 ・・・ 15 3で割って3をかける 等しい場所にフラグを立てる ・・・
  24. 38 38 1 2 -1 4 5 -1 ・・・ 16

    ・・・ -1 -1 -1 -1 -1 -1 -1 ・・・ 作成したマスクを使って書き戻し(store) 5の倍数も同様 15の倍数は、3の倍数マスクと5の倍数マスクのANDをとる