Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Binary and Scalar Embedding Quantization for Si...
Search
Shunsuke Kanda
May 17, 2024
Technology
2
410
Binary and Scalar Embedding Quantization for Significantly Faster & Cheaper Retrieval
https://huggingface.co/blog/embedding-quantization
Shunsuke Kanda
May 17, 2024
Tweet
Share
More Decks by Shunsuke Kanda
See All by Shunsuke Kanda
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
390
Lucene/Elasticsearch の Character Filter でユニコード正規化するとトークンのオフセットがズレるバグへの Workaround - Search Engineering Tech Talk 2024 Spring
kampersanda
0
1.4k
トライとダブル配列の基礎
kampersanda
1
1.3k
Binary search with modern processors
kampersanda
33
14k
AIP Open Seminar #6
kampersanda
0
240
ICDM2020
kampersanda
0
210
SIGSPATIAL20
kampersanda
0
200
EliasFano
kampersanda
1
240
Fast Succinct Trie
kampersanda
1
720
Other Decks in Technology
See All in Technology
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
540
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
140
ガチな登山用デバイスからこんにちは
halka
1
210
カミナシ社の『ID管理基盤』製品内製 - その意思決定背景と2年間の進化 #AWSUnicornDay / Kaminashi ID - The Big Whys
kaminashi
3
800
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
550
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
1
230
シークレット管理だけじゃない!HashiCorp Vault でデータ暗号化をしよう / Beyond Secret Management! Let's Encrypt Data with HashiCorp Vault
nnstt1
3
220
AI開発ツールCreateがAnythingになったよ
tendasato
0
110
Grafana MCPサーバーによるAIエージェント経由でのGrafanaダッシュボード動的生成
hamadakoji
1
1.3k
Grafana Meetup Japan Vol. 6
kaedemalu
1
200
AWSで始める実践Dagster入門
kitagawaz
0
220
サンドボックス技術でAI利活用を促進する
koh_naga
0
180
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
330
21k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Designing for humans not robots
tammielis
253
25k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Faster Mobile Websites
deanohume
309
31k
GraphQLとの向き合い方2022年版
quramy
49
14k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Practical Orchestrator
shlominoach
190
11k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
Binary and Scalar Embedding Quantization for Significantly Faster & Cheaper
Retrieval Aamir Shakir, Tom Aarsen, and SeanLee https://huggingface.co/blog/embedding-quantization 発表者:Kampersanda
Summary 文埋め込みの各値を量子化してコンパクトに持ってみる • Binary Quantization (1 bit) • Scalar Quantization
(8 bits) Efficiency & Effectiveness にどれくらい影響がある?
背景 埋め込み(Embeddings)の保存には結構なメモリとお金が必要 ※ $3.8 per GB/mo with x2gd instances on
AWS
省メモリ化の方法 1. 次元数削減 • PCA • マトリョーシカ法 • など 2.
要素圧縮 • Quantization (Binary & Scalar) • など あとは LSH や Product Quantization などなど 今日のテーマ
Binary Quantization 方法 • 値の符号によって各要素を 0 or 1 に変換 •
距離計算はハミング距離(異なるビットの数) 以上です
Binary Quantization – Sentence Transformersでは
Binary Quantization – Vector Databasesでは
Scalar (int8) Quantization 手順 1. Calibration Dataset から各次元 について min,
max を算出 2. その範囲で値を 256 等分に (バケット化) 注意点 • Calibration Dataset は量子化バ ケットを定義するため、性能に 影響する
Scalar (int8) Quantization – Sentence Transformersでは
Scalar (int8) Quantization – Vector Databasesでは
リランキングによる検索精度改善 [Yamada et al., ACL21] 前提 • データベースには量子化されたベクトルが格納されている 手順 1.
検索ステップ ◦ クエリ埋め込みを量子化し、量子化されたドキュメントのデータベース に対してベクトル検索 ◦ K件より多めに取ってくる 2. リランキング ◦ 量子化する前のクエリ埋め込みと、量子化されたドキュメントとで内積 を再計算しリランキング
TopK検索の実験結果 • BinaryはTop400をリランキング • Scalar (int8) はリランキング無し
リランキングの実験結果 Binary Quantization • リランキング無しでは 92.53% • リランキングすると 96.45%(検索での件数を100〜1000にしても変化なし)
リランキングの実験結果 Scalar (int8) Quantization 400件 1000件 リランキング無し
速度の実験結果(次元数1024) • Binary Quantization: Faiss (Version 1.8.0) • Scalar (int8)
Quantization: USearch (Version 2.9.2)
まとめ 話さなかったこと • Binary と Scalar (int8) のハイブリットな方法 See Section
“Combining Binary and Scalar Quantization”