Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トライとダブル配列の基礎
Search
Shunsuke Kanda
August 03, 2022
Research
0
1k
トライとダブル配列の基礎
昔勉強会で使ったもの
Shunsuke Kanda
August 03, 2022
Tweet
Share
More Decks by Shunsuke Kanda
See All by Shunsuke Kanda
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
290
Lucene/Elasticsearch の Character Filter でユニコード正規化するとトークンのオフセットがズレるバグへの Workaround - Search Engineering Tech Talk 2024 Spring
kampersanda
0
1.2k
Binary and Scalar Embedding Quantization for Significantly Faster & Cheaper Retrieval
kampersanda
2
340
Binary search with modern processors
kampersanda
30
13k
AIP Open Seminar #6
kampersanda
0
190
ICDM2020
kampersanda
0
180
SIGSPATIAL20
kampersanda
0
150
EliasFano
kampersanda
1
200
Fast Succinct Trie
kampersanda
1
650
Other Decks in Research
See All in Research
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
380
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
560
Practical The One Person Framework
asonas
1
2k
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
6
2k
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
190
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1k
最近のVisual Odometryと Depth Estimation
sgk
1
380
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
110
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
160
機械学習でヒトの行動を変える
hiromu1996
1
510
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
23
5.6k
コミュニティドライブプロジェクト
smartfukushilab1
0
140
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Speed Design
sergeychernyshev
25
760
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Rails Girls Zürich Keynote
gr2m
94
13k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
51k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
A Philosophy of Restraint
colly
203
16k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Designing for Performance
lara
604
68k
The Cult of Friendly URLs
andyhume
78
6.2k
Transcript
トライとダブル配列の基礎 @kampersanda
キー検索と文字列照合 2
キー検索 3 ¨ 文字列のキーを検索して,レコードを取り出す ¤ 人間が辞書から検索するのと同じ ¤ 応用:辞書検索、かな漢字変換、etc… キー(読み) 内容(表記)
レコード1 あっぷる アップル,etc… レコード2 こころ 心,ココロ,此処路,etc… レコード3 かお 顔,買お,^^;,∧( ’Θ’ )∧,etc… レコード4 ぴかちゅう ピカチュウ,光宙,etc…
代表的なキー検索手法 4 ¨ 線形探索(Linear Search) ¤ キー集合を探索 ¨ 二分探索(Binary Search)
¤ 整列済みのキー集合を探索 ¨ 二分探索木(Binary Search Tree) ¤ キーの大小関係に基いて二分木を構築 ¨ ハッシュ表(Hash Table) ¤ ハッシュ関数による分配 ¨ トライ(Trie) ¤ トライ木を用いた探索 O(mn) O(m lg n) O(m lg n) O(m) O(m) n:キー数、m:パターン長
文字列照合とは 5 ¨ テキストに含まれる特定のパターンを見つける ¤ 特定のパターン = キー ¤ 例)力任せのアルゴリズム
O(mn) n m:パターン長、n:テキスト長 n テキスト: “ピーチボーイリバーサイド” n パターン: “リバー” ピ ー チ ボ ー イ リ バ ー サ イ ド リ バ ー ずらして照合していく
代表的な文字列照合手法 6 ¨ 状況による分類 ¤ 長いテキストから少数のキーを検索する場合 n 手法:接尾辞配列,接尾辞木,転置索引,etc… n 応用:全文検索,ウェブ検索,ゲノム解析,etc…
¤ 短いテキストから多数のキーを検索する場合 n 手法:トライ,AC法,etc… n 応用:形態素解析,フィルタリング,ウイルス検知,etc… ¨ 参考書籍 ¤ 情報検索アルゴリズム [北ら 02]
トライ 7
トライ 8 ¨ キー集合を表現するラベル付き木 ¤ キーの構成文字をラベルとする ¤ 例 n “嶺上開花”,“嶺上牌”,“四風連打”,“四槓子”
連 子 牌 開 上 風 槓 花 打 嶺 四
トライにおける検索 9 ¨ 根から葉までの移動 ¤ 入力された文字を辿る n 葉に到達 ➔ Found
n 到達不可 ➔ Not Found 連 子 牌 開 上 風 槓 花 打 嶺 四
トライにおける検索 10 ¨ 根から葉までの移動 ¤ “嶺上開花”を検索 n 葉に到達 ➔ Found
¤ “四槓流れ”を検索 n 到達不可 ➔ Not Found 連 子 牌 開 上 風 槓 花 打 嶺 四
トライにおける終端文字 11 ¨ キーの終端を表す文字‘#’ ¤ 部分キーを判別するために用いることがある ¤ 例 n “嶺上”,“嶺上開花”,“嶺上牌”,“四風連打”,“四槓子”
連 子 牌 開 # 上 風 槓 打 # # 花 # # 嶺 四
トライの特徴 12 ¨ 時間効率 ¤ 理論的にはキー数の影響を受けない ¤ 該当キーの長さのみに影響を受ける ¨ 空間効率
¤ 共通の接頭辞は共有される ¨ 機能 ¤ 入力文字列に含まれるキーの検出(形態素解析) ¤ 照合失敗位置の検出(スペルチェック) ¤ キーの補完(入力補完,文書校正)
トライの実装 13 ¨ 遷移関数 goto を実現する ¤ 節点 cur から節点
next への遷移が文字 label に対し て定義されている場合、goto(cur, label) = next ¤ そうでなければ、goto(cur, label) = –1 next cur label
代表的なトライのデータ構造 14 ¨ 行列 ¤ 時間効率 ➔ 良い O(m) ¤
空間効率 ➔ 悪い O(nσ) ¨ 二分木 ¤ 時間効率 ➔ 悪い O(mσ) ¤ 空間効率 ➔ 良い O(n) ¨ ダブル配列 ¤ 時間効率 ➔ 良い O(m) ¤ 空間効率 ➔ 良い O(n) m:パターン長 n:節点数 σ:アルファベットサイズ
行列によるトライ 15 ¨ 次のノードへの参照を配列に格納 ¤ 遷移時間 O(1) n 高速 ¤
空間効率 O(nσ) n 悪い(疎) ¨ def goto(cur, label) ¤ return M[cur][label] 7:牌 4:開 3:# 2:上 8:# 5:花 6:# 1:嶺 0: # 嶺 上 開 花 牌 0 1 1 2 2 3 4 7 … σ n
二分木によるトライ 16 ¨ 次のノードへの参照を連結リストに格納 ¤ 遷移時間 O(σ) n 低速 ¤
空間効率 O(n) n 良い(密) id label child sib node structure 4 開 5 7 例 7:牌 4:開 3:# 2:上 8:# 5:花 6:# 1:嶺 0:
二分木によるトライの遷移 17 ¨ def goto(cur, label) ¤ next := cur.child
¤ loop n if next = –1 then return –1 n if next.label = label then return next n next := next.sib 3 # 4 4 開 5 7 7 牌 8 7:牌 4:開 3:# 2:上 2 上 3 child sib sib
ダブル配列 18
コンセプト 19 ¨ 疎な行列をうまく畳み込む # 嶺 上 開 花 牌
0 1 1 2 2 3 6 8 3 4 4 5 5 6 7 7 8
# 嶺 上 開 花 牌 0 1 1 2
2 3 6 8 3 4 4 5 5 5 6 7 7 7 8 コンセプト 20 ¨ 疎な行列をうまく畳み込む +3 +5 +7 上下で衝突しないようにスライド
# 嶺 上 開 花 牌 0 1 1 2
2 3 6 8 3 4 4 5 5 5 6 7 7 7 8 コンセプト 21 ¨ 疎な行列をうまく畳み込む +3 +5 +7 上下で衝突しないようにスライド 畳み込むとダブル配列になる
畳み込みのご様子 22 0 1 2 3 4 5 6 7
8 BASE CHECK ?:牌 ?:開 ?:# ?:上 ?:# ?:花 ?:# ?:嶺 0: # 嶺 上 開 花 牌 0 ✔ +0 0 1
畳み込みのご様子 23 0 1 2 3 4 5 6 7
8 BASE 0 CHECK 0 ?:牌 ?:開 ?:# ?:上 ?:# ?:花 ?:# 1:嶺 0: # 嶺 上 開 花 牌 1 ✔ +0 1 2
畳み込みのご様子 24 0 1 2 3 4 5 6 7
8 BASE 0 0 CHECK 0 1 ?:牌 ?:開 ?:# 2:上 ?:# ?:花 ?:# 1:嶺 0: # 嶺 上 開 花 牌 2 ✔ ✔ ✔
畳み込みのご様子 25 0 1 2 3 4 5 6 7
8 BASE 0 0 CHECK 0 1 # 嶺 上 開 花 牌 2 ✔ ✔ ✔ +3 2 2 2 ?:牌 ?:開 ?:# 2:上 ?:# ?:花 ?:# 1:嶺 0: 3 6 8
ダブル配列 26 ¨ BASE, CHECKという2つの配列によるトライ表現 ¤ 遷移時間 O(1) ➔ 高速
¤ 空間効率 O(n) ➔ 良い 0 1 2 3 4 5 6 7 8 BASE 0 0 3 5 0 7 CHECK 0 1 2 6 4 2 8 2 8:牌 6:開 3:# 2:上 7:# 4:花 5:# 1:嶺 0:
ダブル配列における遷移 27 ¨ def goto(cur, label) ¤ next := BASE[cur]
+ label ¤ if CHECK[next] = cur n return next ¤ return -1 # 嶺 上 0 1 2 8:牌 6:開 3:# 2:上 0 1 2 3 4 5 6 7 8 BASE 0 0 3 5 0 7 CHECK 0 1 2 6 4 2 8 2 6 := BASE[2] + 開 = 3 + 3 開 花 牌 3 4 5 CHECK[6] = 2
ダブル配列の構築 28 ¨ 静的 ¤ ソート済みのキー集合から構築 ¤ 他の構築済みのトライから変形 ¨ 動的
¤ ずらして挿入 ¨ 詳細は略 ¤ 効率的なダブル配列の構築はめんどくさい ¤ とりわけ動的は職人芸
トライの比較 29 ¨ 時間効率 ¤ ダブル配列 >= 行列 > 二分木
¨ 空間効率 ¤ ダブル配列 > 二分木 > 行列 ¨ 実装難度 ¤ ダブル配列 > 二分木 > 行列 ¨ 結論 ¤ ダブル配列は優秀 ¤ 多くのケースで十分に小さく、十分に高速
ダブル配列の応用例 30 ¨ 辞書検索 ¤ Darts、Darts-clone ¨ 形態素解析 ¤ ChaSen,MeCab
¨ 係り受け解析 ¤ CaboCha ¨ ウイルス検知 ¤ ClamAV ¨ Nグラム言語モデル ¤ DALM ¨ 全文検索エンジン ¤ groonga ¨ オンラインテキスト処理 ¤ Cedar ¨ 圧縮文字列辞書 ¤ Xcdat
ダブル配列の圧縮 31
ダブル配列の圧縮 32 ¨ ポインタベースなデータ構造なので、簡潔データ 構造と比べるとさすがに大きい ¤ ダブル配列: Ω(n lg n)
ビット ¤ LOUDS: 2n + n lg σ + o(n) ビット ¨ 圧縮方策 ¤ 節点削減:冗長な節点を削減する ¤ 要素圧縮:要素あたりのメモリ消費を抑える
CHECKの圧縮 [Yata+ 07] 33 ¨ CHECKに親番号ではなく遷移文字を記入する ¤ CHECKが log n
から log σ に ¤ BASE[i] ≠ BASE[i’] for any i ≠ i’ 0 1 2 3 4 5 6 7 8 9 BASE 0 2 3 7 1 9 CHECK 嶺 # 上 花 開 # 牌 # 6 := BASE[4] + 開 = 3 + 3 CHECK[6] = 開 # 嶺 上 0 1 2 開 花 牌 3 4 5 6:開 4:上 親の参照はできない!!
BASE、CHECKの圧縮 [Kanda+ 17] 34 ¨ 基本的なアイデア ¤ 遷移条件さえ満たせば節点は自由に配置できる ¤ BASE値とCHECK値が、その要素番号と近くなるように節点
を配置し、その差分を代用する ¤ ランダムアクセス可能な可変長符号で配列を表現 0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 CHECK[i] XOR i Address: i XOR ほとんどの値が 1バイトで表せる 0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 CHECK[i] Address: i 親の参照もできます