Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast Succinct Trie
Search
Shunsuke Kanda
August 06, 2019
Research
1
710
Fast Succinct Trie
第七回StringBeginnersでの発表資料です。
Shunsuke Kanda
August 06, 2019
Tweet
Share
More Decks by Shunsuke Kanda
See All by Shunsuke Kanda
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
370
Lucene/Elasticsearch の Character Filter でユニコード正規化するとトークンのオフセットがズレるバグへの Workaround - Search Engineering Tech Talk 2024 Spring
kampersanda
0
1.4k
Binary and Scalar Embedding Quantization for Significantly Faster & Cheaper Retrieval
kampersanda
2
390
トライとダブル配列の基礎
kampersanda
0
1.2k
Binary search with modern processors
kampersanda
30
13k
AIP Open Seminar #6
kampersanda
0
230
ICDM2020
kampersanda
0
210
SIGSPATIAL20
kampersanda
0
190
EliasFano
kampersanda
1
230
Other Decks in Research
See All in Research
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.4k
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
Weekly AI Agents News!
masatoto
33
67k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
230
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
220
数理最適化に基づく制御
mickey_kubo
5
660
数理最適化と機械学習の融合
mickey_kubo
15
8.8k
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
370
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
120
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.4k
Mathematics in the Age of AI and the 4 Generation University
hachama
0
160
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
71
4.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
A better future with KSS
kneath
239
17k
Code Review Best Practice
trishagee
68
18k
Why Our Code Smells
bkeepers
PRO
337
57k
Making Projects Easy
brettharned
116
6.2k
Facilitating Awesome Meetings
lara
54
6.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Transcript
'BTU4VDDJODU5SJF @kampersanda 7th StringBeginners հจɿ ;IBOH -JN -FJT "OEFSTFO ,BNJOTLZ
,FFUPOBOE1BWMP 4V3'1SBDUJDBM3BOHF2VFSZ'JMUFSJOHXJUI'BTU4VDDJODU5SJF *O4*(.0% QQ
'BTU4VDDJODU5SJF '45 w ͷ4*(.0%ͰఏҊ͞Εͨ؆ܿ5SJFදݱ ;IBOHFUBM4V3'1SBDUJDBMSBOHFRVFSZpMUFSJOHXJUI GBTUTVDDJODUUSJFT4*(.0% 4VDDJODU3BOHF'JMUFS
4V3' ͷͨΊʹఏҊ͞Εͨ Ұൠతͳ༻్ʹ͑Δ w ࠓճͷൃද4V3'Ͱͳ͘'45ʹযΛͯͨͷͰ͢ w ͪͳΈʹ ච಄ஶऀ͞ΜʹΑΔΘ͔Γ͍͢εϥΠυ͕͏͢Ͱʹ͋Γ·͢ ‣ IUUQXXXDTDNVFEVdIVBODIFTMJEFT'45QEG ࠓճͷ୯७ʹͦΕΛͳͧͬͨͷͰͳ͍Ͱ͢ 2
5SJFࣙॻ w 5SJFͱҰݴͰݴͬͯɺٻΊΒΕΔૢ࡞͍Ζ͍Ζ w ࠓճ؆୯ʹҎԼͷΑ͏ͳૢ࡞͕Ͱ͖ΕΑ͠ͱ͠·͢ .FNCFS 4 ɿจࣈྻ4͕Ωʔͱؚͯ͠·Ε͍ͯΔ͔ʁ
1SFpY 4 ɿจࣈྻ4ͷ಄ࣙͱ࠷Ұக͢ΔΩʔʁ 3 .FNCFS Θͨ͠ :FT .FNCFS Θͨ͘͠ /P 1SFpY Θͨ͘͠ Θͨ ͨ Θ ʹ ͠ Έ ͨ Θ ͠
ͦͦ؆ܿ5SJFͬͯԿʁ 'BTU4VDDJODU5SJF '45 ͱʁ 5SJFࣙॻͱͯ͠ͷ'45ͷੑೳʁ
ͦͦ؆ܿ5SJFͬͯԿʁ 'BTU4VDDJODU5SJF '45 ͱʁ 5SJFࣙॻͱͯ͠ͷ'45ͷੑೳʁ
؆ܿ5SJFͱʁ w ใཧతԼݶʹ͍ۙϝϞϦྔͰ5SJFΛදݱ͢Δσʔλߏ OMHМ 0 O Ϗοτ ‣ OઅɺМΞϧϑΝϕοταΠζ
w ʮॱংͷ؆ܿදݱʯ ʮϥϕϧͷྻʯͰΑ͘දݱ͞ΕΔ w ̏ͭͷදతͳॱংͷ؆ܿσʔλߏ #1 #BMBODFE1BSFOUIFTFT %'6%4 %FQUI'JSTU6OBSZ%FHSFF4FRVFODF -06%4 -FWFM0SEFSFE6OBSZ%FHSFF4FRVFODF w ͪͳΈʹɺ 9#8N#POTBJͳͲ؆ܿ5SJFͰ͕͢ࠓճѻΘͳ͍Ͱ͢ 6 O P O CJUT OMPHМCJUT
#1 #BMBODFE1BSFOUIFTFT w ֤અΛ։ׅހ(ͱดׅހ)ͷϖΞͰදݱ ਂ͞༏ઌॱͰΛࠪ ߦ͖ͷ๚Ͱ(Λஔ͖ɺؼΓͷ๚Ͱ)Λஔ͘ 7
'JSTU$IJME QPT QPT /FYU4JCMJOH QPT 'JOE$MPTF QPT ( ( ( ) ( ( ) ( ) ) ) ( ( ( ) ) ) ) 'JOE$MPTFɿରԠ͢ΔดׅހͷҐஔ
%'6%4 %FQUI'JSTU6OBSZ%FHSFF4FRVFODF w #1ΑΓଟػೳͳׅހྻදݱ ਂ͞༏ઌॱͰΛࠪ ֤અʹ͍ͭͯɺͦͷࢠͱಉ͡ͷ(ͱ̍ݸͷ)Λஔ͘ ࠷ޙʹઌ಄ʹ(Λஔ͘
8 ( ( ( ) ( ( ) ) ( ( ) ) ) ( ) ( ) ) $IJME QPT J 'JOE$MPTF 4FMFDU) 3BOL) QPT J 3BOLb QPT ɿQPT·Ͱͷbͷ 4FMFDUb L ɿL൪ͷb͕ݱΕΔҐஔ 'JOE$MPTF
-06%4 -FWFM0SEFSFE6OBSZ%FHSFF4FRVFODF w ͜ͷੈͰͬͱγϯϓϧͳදݱʢྑ͍ҙຯͰʣ ෯༏ઌॱʹΛࠪ ֤અʹ͍ͭͯɺͦͷࢠͱಉ͡ͷ1ͱ̍ݸͷ0Λஔ͘ ࠷ޙʹઌ಄ʹ10Λஔ͘
9 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 'JSTU$IJME QPT 4FMFDU0 3BOL1 1PT /FYU4JCMJOH QPT QPT 3BOLb QPT ɿQPT·Ͱͷbͷ 4FMFDUb L ɿL൪ͷb͕ݱΕΔҐஔ 'JSTU$IJME
؆ܿ5SJFͷϨϏϡʔ 10 ػೳੑ ݕࡧ ࣮ #1 ̋ ˚ %'6%4
˕ ̋ -06%4 ˚ ˕ қ w Ұൠతʹɺࣙॻͱͯ͠ͷ5SJF಄ࣙݕࡧ͕Ͱ͖Εे w #1ͱ%'6%4Ϧον͗͢ΔͷͰ-06%4͕࠾༻͞ΕΔέʔε͕ଟ͍ 59ɺ69ɺ."3*4"ɺ'45ɺͳͲ w ͦͷลΓͷൺֱ࣮ݧ "SSPZVFMPFUBM4VDDJODUUSFFTJOQSBDUJDF"-&/&9 ాΒॱংͷ؆ܿදݱΛ༻͍ͨτϥΠࣙॻͷධՁॲશࠃ ࠓͱͳͬͯ ͦ͜·Ͱ͡Όͳ͍
ͦͦ؆ܿ5SJFͬͯԿʁ 'BTU4VDDJODU5SJF '45 ͱʁ 5SJFࣙॻͱͯ͠ͷ'45ͷੑೳʁ
ઃܭͷϞνϕʔγϣϯ w ࠜͷۙͷઅͱ༿ͷۙͷઅͰੑׂ࣭͕ҧ͏ 12 w ͪͳΈʹɺͦͷΑ͏ͳϞνϕʔγϣϯ౷తʹ͋Γ·͢ "35ɿઅͷ࣍ʹΑΓదͳσʔλߏΛબ #VSTU5SJF)"5ɿࠜۙͷઅΛ୯७ͳྻͰදݱ
."3*4"ɿࠜͷۙͷ3BOL4FMFDUͷԋࢉ݁ՌΛΩϟογϡ ૄ සൟʹΞΫηε͞ΕΔ େଟͷઅ͕ଐ͢Δ ͕େࣄʂ ϝϞϦޮ͕େࣄʂ ͨ Θ ʹ ͠ Έ ͨ Θ ͠ ີ
-06%4%4ɿೋछྨͷ-06%4Ͱදݱ 13 ਤจΑΓҾ༻ w ࠜۙߴͳ-06%4%FOTF w ༿ۙϝϞϦޮͷྑ͍-06%44QBSTF
-06%4%FOTF 14 - )$ ͨ Θ ʹ ͠ Έ ͨ
Θ ͠ - )$ ͨ Θ Θ ͨ ʹ - )$ ͠ ͠ Έ ˞ଟগɺ؆ུԽͯ͠·͢ w -ɿͦͷࢬϥϕϧΛ࣋ͭࢠ͕ଘࡏ͢Δ͔ʁ w )$ɿͦͷࢠ෦અ͔ʁ МޒेԻ w ֤෦અΛ͞Мͷ ϏοτϚοϓͰදݱ
-06%4%FOTF 15 - )$ ͨ Θ ʹ ͠ Έ ͨ
Θ ͠ - )$ ͨ Θ Θ ͨ ʹ - )$ ͠ ͠ Έ ॳظঢ়ଶɿQPT ʮΘͨ͠ʯͰݕࡧ ߋ৽ɿQPTQPT จࣈ ֬ೝɿ-<QPT>ͳΒࢠ͕ଘࡏ͠ɺ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT Мº3BOL )$ QPT QPT М ˞ଟগɺ؆ུԽͯ͠·͢
-06%4%FOTF 16 ͨ Θ ʹ ͠ Έ ͨ Θ ͠
ͨ Θ Θ ͨ ʹ ͠ ͠ Έ QPT $IJME1PT ʮΘͨ͠ʯͰݕࡧ М ˞ଟগɺ؆ུԽͯ͠·͢ - )$ - )$ - )$ QPT ߋ৽ɿQPTQPT จࣈ ֬ೝɿ-<QPT>ͳΒࢠ͕ଘࡏ͠ɺ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT Мº3BOL )$ QPT 3BOL )$ QPT
-06%4%FOTF 17 ͨ Θ ʹ ͠ Έ ͨ Θ ͠
ͨ Θ Θ ͨ ʹ ͠ ͠ Έ QPT $IJME1PT ʮΘͨ͠ʯͰݕࡧ М ˞ଟগɺ؆ུԽͯ͠·͢ - )$ - )$ - )$ QPT ߋ৽ɿQPTQPT จࣈ ֬ೝɿ-<QPT>ͳΒࢠ͕ଘࡏ͠ɺ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT Мº3BOL )$ QPT 3BOL )$ QPT
-06%4%FOTF 18 ͨ Θ ʹ ͠ Έ ͨ Θ ͠
ͨ Θ Θ ͨ ʹ ͠ ͠ Έ QPT )$<QPT>ͳͷͰ༿ ʮΘͨ͠ʯͰݕࡧ М ˞ଟগɺ؆ུԽͯ͠·͢ - )$ - )$ - )$ QPT ߋ৽ɿQPTQPT จࣈ ֬ೝɿ-<QPT>ͳΒࢠ͕ଘࡏ͠ɺ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT Мº3BOL )$ QPT
-06%44QBSTF 19 ͨ Θ
ʹ ͠ Έ ͨ Θ ͠ - ͨ Θ Θ ͨ ʹ ͠ ͠ Έ )$ 4 ˞ଟগɺ؆ུԽͯ͠·͢ w ݪཧతʹී௨ͷ-06%4ͱҰॹ w-ɿϥϕϧͷྻ w)$ɿͦͷઅ෦અ͔ʁ w4ɿͦͷઅஉ͔ʁʢݪཧతʹී௨ͷ-06%4ʣ
-06%44QBSTF 20 ʮΘͨ͠ʯͰݕࡧ
- ͨ Θ Θ ͨ ʹ ͠ ͠ Έ )$ 4 ୳ࡧɿQPT -<QPT>จࣈ ͳQPT ֬ೝɿ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT 4FMFDU 4 3BOL )$ QPT ˞ଟগɺ؆ུԽͯ͠·͢ ॳظঢ়ଶɿQPT QPT ͨ Θ ʹ ͠ Έ ͨ Θ ͠
-06%44QBSTF 21 ʮΘͨ͠ʯͰݕࡧ
- ͨ Θ Θ ͨ ʹ ͠ ͠ Έ )$ 4 ˞ଟগɺ؆ུԽͯ͠·͢ QPT $IJME1PT QPT ୳ࡧɿQPT -<QPT>จࣈ ͳQPT ֬ೝɿ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT 4FMFDU 4 3BOL )$ QPT ͨ Θ ʹ ͠ Έ ͨ Θ ͠ 3BOL )$ QPT 4FMFDU 4
ͨ Θ ʹ ͠
Έ ͨ Θ ͠ -06%44QBSTF 22 ʮΘͨ͠ʯͰݕࡧ - ͨ Θ Θ ͨ ʹ ͠ ͠ Έ )$ 4 ˞ଟগɺ؆ུԽͯ͠·͢ QPT $IJME1PT ୳ࡧɿQPT -<QPT>จࣈ ͳQPT ֬ೝɿ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT 4FMFDU 4 3BOL )$ QPT 3BOL )$ QPT 4FMFDU 4
-06%44QBSTF 23 ʮΘͨ͠ʯͰݕࡧ
- ͨ Θ Θ ͨ ʹ ͠ ͠ Έ )$ 4 ˞ଟগɺ؆ུԽͯ͠·͢ QPT )$<QPT>ͳͷͰ༿ ୳ࡧɿQPT -<QPT>จࣈ ͳQPT ֬ೝɿ)$<QPT>ͳΒͦͷࢠ෦અ ભҠɿ$IJME1PT QPT 4FMFDU 4 3BOL )$ QPT ͨ Θ ʹ ͠ Έ ͨ Θ ͠
'45ͷͦͷଞͷ w -06%4%FOTF4QBSTFͦΕͧΕʹదͳ3BOLࣙॻͷઃܭ w 4*.%ʹΑΔϥϕϧ୳ࡧͷߴԽ w ϓϦϑΣον໋ྩͷ׆༻ 24 ਤจΑΓҾ༻
ͦͦ؆ܿ5SJFͬͯԿʁ 'BTU4VDDJODU5SJF '45 ͱʁ 5SJFࣙॻͱͯ͠ͷ'45ͷੑೳʁ
'45ͷԠ༻ɿ3BOHF2VFSZ'JMUFSJOH w '453BOHF2VFSZ'JMUFSJOHͷҝͷσʔλߏͱͯ͠ఏҊ͞Εͨ 26 * $ % . & .
- ɿ*$"-1͔Β*$%.ͷؒʹؚ·ΕΔσʔλ͋Δʁ ղɿ:&4ʢ*$%&ͱ*$%.ʣ ɿ*$"-1͔Β*$%.ͷؒʹؚ·ΕΔσʔλʁ ղɿͭʢ*$%&ͱ*$%.ʣ w 4V3' 4VDDJODU3BOHF'JMUFS Ͱ'45ͷར༻ʹՃ͑ɺϢχʔΫͳ ඌࣙΛΓޡݕग़Λڐ͢͜ͱͰɺ#MPPN'JMUFSʹඖఢ͢ΔϝϞϦ༻ྔ Ͱ3BOHF2VFSZ'JMUFSJOHΛ࣮ݱ͢Δ
'45ͷੑೳʢจΑΓҾ༻ʣ w طଘͷ؆ܿ5SJFࣙॻͱൺͯ 27 ϏοτΛόΠτจࣈྻͱͯ͠ ϗετ໊Λͻͬ͘Γฦͯ͠ FH DPNHPPMHF!LBOEB UYUSJFγϯϓϧͳ-06%4 1%5ܦ࿏ղ
%'6%4
'45ͷੑೳʢจΑΓҾ༻ʣ w CJUJOUͰ-06%4%FOTFͷߩݙ͕େ͖͍ Ұ༷Ͱੜ͞Εͨσʔλ ͳͷͰ֤અͷࢠͷ͕ͱͯେ͖͍ 28 CBTFMJOF-06%44QBSTFͷΈ w
5SJFࣙॻͱͯͪ͠ΐͬͱಛघͳσʔληοτʁ w ࣗવݴޠͳͲσʔληοτͰͷੑೳͲ͏ͳͷʁ
5SJFࣙॻɺ࣮͠·ͨ͠ 29 w IUUQTHJUIVCDPNLBNQFSTBOEBGBTU@TVDDJODU@USJF
.FNPSZ6TBHF .J# '45 %"354$ 9$%"5
59 ."3*4" 1%5 4FBSDI5JNF NJDSPTFDRVFSZ '45 %"354$ 9$%"5 59 ."3*4" 1%5 .FNPSZ6TBHF .J# '45 %"354$ 9$%"5 59 ."3*4" 1%5 4FBSDI5JNF NJDSPTFDRVFSZ '45 %"354$ 9$%"5 59 ."3*4" 1%5 30 ࣮ݧʢຊޠʣ ϝϞϦ ݕࡧ *1"ࣙॻ .TUSJOHT BWFMFOHUI 8JLJλΠτϧ .TUSJOHT BWFMFOHUI
31 ࣮ݧʢ"TLJUJT`TEBUBTFUʣ .FNPSZ6TBHF .J# '45
%"354$ 9$%"5 59 ."3*4" 1%5 4FBSDI5JNF NJDSPTFDRVFSZ '45 %"354$ 9$%"5 59 ."3*4" 1%5 ϝϞϦ ݕࡧ %JTUJODU .TUSJOHT BWFMFOHUI 6SM .TUSJOHT BWFMFOHUI .FNPSZ6TBHF .J# '45 %"354$ 9$%"5 59 ."3*4" 1%5 4FBSDI5JNF NJDSPTFDRVFSZ '45 %"354$ 9$%"5 59 ."3*4" 1%5
·ͱΊ w '45γϯϓϧͳ-06%4ͳվྑ w σʔλ͔ΒΔΑ͏ͳઅͷࢠͷ͕ͱͯଟ͍5SJFʹ ରͯ͠ɺ-06%4%FOTFͷߩݙ͕ͱͯେ͖͍ 3BOHFRVFSZpMUFSJOHͷͨΊͷσʔλߏͱͯ͠Α͍ w ҰํͰɺࣗવݴޠσʔλͳͲͰطଘͷ5SJFࣙॻͷํ͕ޮ͕
ྑͦ͞͏ ͔͠͠ͳ͕Βɺ-06%4%FOTFͱଞͷ5SJFࣙॻʢྫ͑ 1%5ͱ͔ʣΛΈ߹ΘͤΔͳͲͷํࡦߟ͑ΒΕͦ͏ 32